Exemplo n.º 1
0
def main(infile, outfile):
    try:
        boot_time = time.time()
        split_index = read_int(infile)
        if split_index == -1:  # for unit tests
            sys.exit(-1)

        version = utf8_deserializer.loads(infile)
        if version != "%d.%d" % sys.version_info[:2]:
            raise RuntimeError((
                "Python in worker has different version %s than that in " +
                "driver %s, PySpark cannot run with different minor versions. "
                + "Please check environment variables PYSPARK_PYTHON and " +
                "PYSPARK_DRIVER_PYTHON are correctly set.") %
                               ("%d.%d" % sys.version_info[:2], version))

        # read inputs only for a barrier task
        isBarrier = read_bool(infile)
        boundPort = read_int(infile)
        secret = UTF8Deserializer().loads(infile)

        # set up memory limits
        memory_limit_mb = int(
            os.environ.get('PYSPARK_EXECUTOR_MEMORY_MB', "-1"))
        if memory_limit_mb > 0 and has_resource_module:
            total_memory = resource.RLIMIT_AS
            try:
                (soft_limit, hard_limit) = resource.getrlimit(total_memory)
                msg = "Current mem limits: {0} of max {1}\n".format(
                    soft_limit, hard_limit)
                print(msg, file=sys.stderr)

                # convert to bytes
                new_limit = memory_limit_mb * 1024 * 1024

                if soft_limit == resource.RLIM_INFINITY or new_limit < soft_limit:
                    msg = "Setting mem limits to {0} of max {1}\n".format(
                        new_limit, new_limit)
                    print(msg, file=sys.stderr)
                    resource.setrlimit(total_memory, (new_limit, new_limit))

            except (resource.error, OSError, ValueError) as e:
                # not all systems support resource limits, so warn instead of failing
                lineno = getframeinfo(currentframe(
                )).lineno + 1 if currentframe() is not None else 0
                print(warnings.formatwarning(
                    "Failed to set memory limit: {0}".format(e),
                    ResourceWarning, __file__, lineno),
                      file=sys.stderr)

        # initialize global state
        taskContext = None
        if isBarrier:
            taskContext = BarrierTaskContext._getOrCreate()
            BarrierTaskContext._initialize(boundPort, secret)
            # Set the task context instance here, so we can get it by TaskContext.get for
            # both TaskContext and BarrierTaskContext
            TaskContext._setTaskContext(taskContext)
        else:
            taskContext = TaskContext._getOrCreate()
        # read inputs for TaskContext info
        taskContext._stageId = read_int(infile)
        taskContext._partitionId = read_int(infile)
        taskContext._attemptNumber = read_int(infile)
        taskContext._taskAttemptId = read_long(infile)
        taskContext._resources = {}
        for r in range(read_int(infile)):
            key = utf8_deserializer.loads(infile)
            name = utf8_deserializer.loads(infile)
            addresses = []
            taskContext._resources = {}
            for a in range(read_int(infile)):
                addresses.append(utf8_deserializer.loads(infile))
            taskContext._resources[key] = ResourceInformation(name, addresses)

        taskContext._localProperties = dict()
        for i in range(read_int(infile)):
            k = utf8_deserializer.loads(infile)
            v = utf8_deserializer.loads(infile)
            taskContext._localProperties[k] = v

        shuffle.MemoryBytesSpilled = 0
        shuffle.DiskBytesSpilled = 0
        _accumulatorRegistry.clear()

        # fetch name of workdir
        spark_files_dir = utf8_deserializer.loads(infile)
        SparkFiles._root_directory = spark_files_dir
        SparkFiles._is_running_on_worker = True

        # fetch names of includes (*.zip and *.egg files) and construct PYTHONPATH
        add_path(
            spark_files_dir)  # *.py files that were added will be copied here
        num_python_includes = read_int(infile)
        for _ in range(num_python_includes):
            filename = utf8_deserializer.loads(infile)
            add_path(os.path.join(spark_files_dir, filename))

        importlib.invalidate_caches()

        # fetch names and values of broadcast variables
        needs_broadcast_decryption_server = read_bool(infile)
        num_broadcast_variables = read_int(infile)
        if needs_broadcast_decryption_server:
            # read the decrypted data from a server in the jvm
            port = read_int(infile)
            auth_secret = utf8_deserializer.loads(infile)
            (broadcast_sock_file,
             _) = local_connect_and_auth(port, auth_secret)

        for _ in range(num_broadcast_variables):
            bid = read_long(infile)
            if bid >= 0:
                if needs_broadcast_decryption_server:
                    read_bid = read_long(broadcast_sock_file)
                    assert (read_bid == bid)
                    _broadcastRegistry[bid] = \
                        Broadcast(sock_file=broadcast_sock_file)
                else:
                    path = utf8_deserializer.loads(infile)
                    _broadcastRegistry[bid] = Broadcast(path=path)

            else:
                bid = -bid - 1
                _broadcastRegistry.pop(bid)

        if needs_broadcast_decryption_server:
            broadcast_sock_file.write(b'1')
            broadcast_sock_file.close()

        _accumulatorRegistry.clear()
        eval_type = read_int(infile)
        if eval_type == PythonEvalType.NON_UDF:
            func, profiler, deserializer, serializer = read_command(
                pickleSer, infile)
        else:
            func, profiler, deserializer, serializer = read_udfs(
                pickleSer, infile, eval_type)

        init_time = time.time()

        def process():
            iterator = deserializer.load_stream(infile)
            out_iter = func(split_index, iterator)
            try:
                serializer.dump_stream(out_iter, outfile)
            finally:
                if hasattr(out_iter, 'close'):
                    out_iter.close()

        if profiler:
            profiler.profile(process)
        else:
            process()

        # Reset task context to None. This is a guard code to avoid residual context when worker
        # reuse.
        TaskContext._setTaskContext(None)
        BarrierTaskContext._setTaskContext(None)
    except BaseException as e:
        try:
            exc_info = None
            if os.environ.get("SPARK_SIMPLIFIED_TRACEBACK", False):
                tb = try_simplify_traceback(sys.exc_info()[-1])
                if tb is not None:
                    e.__cause__ = None
                    exc_info = "".join(
                        traceback.format_exception(type(e), e, tb))
            if exc_info is None:
                exc_info = traceback.format_exc()

            write_int(SpecialLengths.PYTHON_EXCEPTION_THROWN, outfile)
            write_with_length(exc_info.encode("utf-8"), outfile)
        except IOError:
            # JVM close the socket
            pass
        except BaseException:
            # Write the error to stderr if it happened while serializing
            print("PySpark worker failed with exception:", file=sys.stderr)
            print(traceback.format_exc(), file=sys.stderr)
        sys.exit(-1)
    finish_time = time.time()
    report_times(outfile, boot_time, init_time, finish_time)
    write_long(shuffle.MemoryBytesSpilled, outfile)
    write_long(shuffle.DiskBytesSpilled, outfile)

    # Mark the beginning of the accumulators section of the output
    write_int(SpecialLengths.END_OF_DATA_SECTION, outfile)
    write_int(len(_accumulatorRegistry), outfile)
    for (aid, accum) in _accumulatorRegistry.items():
        pickleSer._write_with_length((aid, accum._value), outfile)

    # check end of stream
    if read_int(infile) == SpecialLengths.END_OF_STREAM:
        write_int(SpecialLengths.END_OF_STREAM, outfile)
    else:
        # write a different value to tell JVM to not reuse this worker
        write_int(SpecialLengths.END_OF_DATA_SECTION, outfile)
        sys.exit(-1)
Exemplo n.º 2
0
# http://spark.apache.org/docs/latest/api/python/pyspark.resource.html
# New in version 3.0.0.
from pyspark import SparkContext
from pyspark.resource import ResourceInformation

r = ResourceInformation("name", [])

sc = SparkContext(jsc=None)
# SparkContext使用Py4J启动JVM并创建JavaSparkContext。
# 由jsc传入的
# jsc: The JavaSparkContext instance (optional).
# SparkContext(jsc=xx)
"""
源码
Create the Java SparkContext through Py4J
self._jsc = jsc or self._initialize_context(self._conf._jconf)
"""
print(sc.resources)