def get_concept_list(df: pyspark.sql.dataframe.DataFrame) -> list:
    # Query and create new dataframe
    concept_list = [
        row.Concept_NEW
        for row in df.select("Concept_NEW").distinct().collect()
    ]
    return concept_list
Exemplo n.º 2
0
def _simple_entropy(df: pyspark.sql.dataframe.DataFrame, column_name: str) -> float:
    count = df.count()
    testdf = df.select(column_name).groupby(column_name).agg((F.count(column_name) / count).alias("p"))
    result = testdf.groupby().agg(-F.sum(F.col("p") * F.log2("p"))).collect()[0][0]
    if not result:
        return 0.0
    return result
Exemplo n.º 3
0
def merge_dataset(
        df: pyspark.sql.dataframe.DataFrame
) -> pyspark.sql.dataframe.DataFrame:
    # Generate sale information for each product in each month
    month_df = df.select('MatID', "SKU",
                         year("Date").alias('year'),
                         month("Date").alias('month'), 'GrossSales',
                         'NetSales', 'COGS', 'QtySold', 'Price', 'SellMargin',
                         'FrontMargin', 'SubCategory',
                         'Vendor').groupBy("month", 'MatID', "SubCategory",
                                           'Vendor')
    ## get the average net-sales of each product
    month_avg_NetSale = month_df.avg("NetSales").withColumnRenamed(
        "avg(NetSales)", "totalMonthlyNetSale")
    ## get the average gross-sales of each product
    month_avg_GrossSale = month_df.avg("GrossSales").withColumnRenamed(
        "avg(GrossSales)", "totalMonthlyGrossSale")
    month_avg_COGS = month_df.avg("COGS").withColumnRenamed(
        "avg(COGS)", "avgCOGS")
    month_avg_QtySold = month_df.avg("QtySold").withColumnRenamed(
        "avg(QtySold)", "totalMonthlyQtySold")
    month_avg_Price = month_df.avg("Price").withColumnRenamed(
        "avg(Price)", "Price")
    month_avg_SM = month_df.avg("SellMargin").withColumnRenamed(
        "avg(SellMargin)", "SellMargin")
    month_avg_FM = month_df.avg("FrontMargin").withColumnRenamed(
        "avg(FrontMargin)", "avgFrontMargin")

    month_merge = month_avg_NetSale.join(
        month_avg_GrossSale,
        on=["MatID", 'month', 'SubCategory', 'Vendor'],
        how="inner")
    month_merge = month_merge.join(
        month_avg_COGS,
        on=["MatID", 'month', 'SubCategory', 'Vendor'],
        how="inner")
    month_merge = month_merge.join(
        month_avg_QtySold,
        on=["MatID", 'month', 'SubCategory', 'Vendor'],
        how="inner")
    month_merge = month_merge.join(
        month_avg_Price,
        on=["MatID", 'month', 'SubCategory', 'Vendor'],
        how="inner")
    month_merge = month_merge.join(
        month_avg_SM,
        on=["MatID", 'month', 'SubCategory', 'Vendor'],
        how="inner")
    month_merge = month_merge.join(
        month_avg_FM,
        on=["MatID", 'month', 'SubCategory', 'Vendor'],
        how="inner")

    return month_merge
Exemplo n.º 4
0
def find_and_analysis_fullMonth_SKU(
        df_atLeastOneMonth: pyspark.sql.dataframe.DataFrame, split_month: int,
        spark) -> pyspark.sql.dataframe.DataFrame:
    """
    Find SKU, which "soldQty < capacity" in every month
    """
    full_month_items = select_full_month_item(
        df_atLeastOneMonth.toPandas(),
        month_list=[split_month, split_month + 1,
                    split_month + 2])  # three month data since split_month
    full_month_SKU_info = get_full_month_SKU_info(
        full_month_items, df_atLeastOneMonth.select(selected_column_fullMonth),
        spark).dropDuplicates()

    return full_month_SKU_info
Exemplo n.º 5
0
def clean_dist_df(
    dist_df: pyspark.sql.dataframe.DataFrame
) -> pyspark.sql.dataframe.DataFrame:
    # filter data
    dist_df = dist_df.select("Name", "Facings", "Capacity", 'Days Supply',
                             'Classification', 'Mat ID', '# POGs')

    ### Rename column
    dist_df = dist_df.withColumnRenamed("Name", "SKU")
    dist_df = dist_df.withColumnRenamed("Days Supply", "DaysSupply")
    dist_df = dist_df.withColumnRenamed("Mat ID", "MatID")
    dist_df = dist_df.withColumnRenamed("# POGs", "POGS")

    # Conver columns to `FloatType()`
    dist_df = dist_df.withColumn("Facings", dist_df.Facings.cast('float'))
    dist_df = dist_df.withColumn("Capacity", dist_df.Capacity.cast('float'))
    dist_df = dist_df.withColumn("DaysSupply",
                                 dist_df.DaysSupply.cast('float'))
    dist_df = dist_df.withColumn("MatID", dist_df.MatID.cast('integer'))
    dist_df = dist_df.withColumn("POGS", dist_df.POGS.cast('integer'))
    return dist_df
def clean_dataset(
        df: pyspark.sql.dataframe.DataFrame
) -> pyspark.sql.dataframe.DataFrame:

    ## Select the target features
    df = df.select('Index', 'Date Detail', 'Company', 'Business Unit',
                   'Concept_NEW', 'Product Category',
                   'Company and Cost Centre', 'SKU', 'POS Net Sales',
                   'Rank Total')

    ## Reanme columns
    df = df.withColumnRenamed("POS Net Sales", "NetSales")
    df = df.withColumnRenamed("Date Detail", "Date")
    df = df.withColumnRenamed("Product Category", "Category")
    df = df.withColumnRenamed("Company and Cost Centre", "Store")
    df = df.withColumnRenamed("Business Unit", "BusinessUnit")
    df = df.withColumnRenamed("Rank Total", "rank")

    ## Column type cast
    columns = ['NetSales', 'rank']
    df = convertColumn(df, columns, FloatType())
    # Replace none to 0
    df = df.na.fill(0)
    return df
Exemplo n.º 7
0
def estimate_segments(
    df: pyspark.sql.dataframe.DataFrame,
    target_field: str = None,
    max_segments: int = 30,
    include_columns: List[str] = [],
    unique_perc_bounds: Tuple[float, float] = [None, 0.8],
    null_perc_bounds: Tuple[float, float] = [None, 0.2],
) -> Optional[Union[List[Dict], List[str]]]:
    """
    Estimates the most important features and values on which to segment
    data profiling using entropy-based methods.

    If no target column provided, maximum entropy column is substituted.

    :param df: the dataframe of data to profile
    :param target_field: target field (optional)
    :param max_segments: upper threshold for total combinations of segments,
    default 30
    :param include_columns: additional non-string columns to consider in automatic segmentation. Warning: high cardinality columns will degrade performance.
    :param unique_perc_bounds: tuple of form [lower, upper] with bounds on the percentage of unique values (|unique| / |X|). Upper bound exclusive.
    :param null_perc_bounds: tuple of form [lower, upper] with bounds on the percentage of null values. Upper bound exclusive.
    :return: a list of segmentation feature names
    """
    current_split_columns = []
    segments = []
    segments_used = 1
    max_entropy_column = (float("-inf"), None)

    if not unique_perc_bounds[0]:
        unique_perc_bounds[0] = float("-inf")
    if not unique_perc_bounds[1]:
        unique_perc_bounds[1] = float("inf")
    if not null_perc_bounds[0]:
        null_perc_bounds[0] = float("-inf")
    if not null_perc_bounds[1]:
        null_perc_bounds[1] = float("inf")

    valid_column_names = set()

    count = df.count()

    print("Limiting to categorical (string) data columns...")
    valid_column_names = {col for col in df.columns if (df.select(col).dtypes[0][1] == "string" or col in include_columns)}

    print("Gathering cardinality information...")
    n_uniques = {col: df.agg(F.approx_count_distinct(col)).collect()[0][0] for col in valid_column_names}
    print("Gathering missing value information...")
    n_nulls = {col: df.filter(df[col].isNull()).count() for col in valid_column_names}

    print("Finding valid columns for autosegmentation...")
    for col in valid_column_names.copy():
        null_perc = 0.0 if count == 0 else n_nulls[col] / count
        unique_perc = 0.0 if count == 0 else n_uniques[col] / count
        if (
            col in segments
            or n_uniques[col] <= 1
            or null_perc < null_perc_bounds[0]
            or null_perc >= null_perc_bounds[1]
            or unique_perc < unique_perc_bounds[0]
            or unique_perc >= unique_perc_bounds[1]
        ):
            valid_column_names.remove(col)

    if not valid_column_names:
        return []

    if not target_field:
        print("Finding alternative target field since none were specified...")
        for col in valid_column_names:
            col_entropy = _simple_entropy(df, col)
            if n_uniques[col] > 1:
                col_entropy /= math.log(n_uniques[col])
            if col_entropy > max_entropy_column[0]:
                max_entropy_column = (col_entropy, col)
        target_field = max_entropy_column[1]

    print(f"Using {target_field} column as target field.")
    assert target_field in df.columns
    valid_column_names.add(target_field)
    valid_column_names = list(valid_column_names)

    countdf = df.select(valid_column_names).groupby(valid_column_names).count().cache()

    print("Calculating segments...")
    while segments_used < max_segments:
        valid_column_names = {col for col in valid_column_names if (col not in segments and n_uniques[col] * segments_used <= (max_segments - segments_used))}
        _, segment_column_name = _find_best_split(
            countdf, current_split_columns, list(valid_column_names), target_column_name=target_field, normalization=n_uniques
        )

        if not segment_column_name:
            break

        segments.append(segment_column_name)
        current_split_columns.append(segment_column_name)
        segments_used *= n_uniques[segment_column_name]

    return segments
def get_week_list(df: pyspark.sql.dataframe.DataFrame) -> list:
    # Query and create new dataframe
    week_list = [row.Date for row in df.select("Date").distinct().collect()]
    week_list.sort()  # sort date by increasing order
    return week_list
Exemplo n.º 9
0
def Data_clean_and_merge(
        df: pyspark.sql.dataframe.DataFrame,
        Subcat_info: pyspark.sql.dataframe.DataFrame,
        Vendor_info: pyspark.sql.dataframe.DataFrame,
        store_name: str,
        begin_date="2019-04-01",
        end_date="2019-10-01") -> pyspark.sql.dataframe.DataFrame:
    # select useful columns
    Subcat_info = Subcat_info.select('SKU', 'SubCategory')
    Vendor_info = Vendor_info.select('SKU', 'Vendor')
    # clean data entry: remove ID
    split_col = split(Subcat_info['SKU'], '-')
    Subcat_info = Subcat_info.withColumn('MatID', split_col.getItem(0))
    Subcat_info = Subcat_info.withColumn('MatID',
                                         regexp_replace(
                                             col("MatID"), "[ZNDF]",
                                             ""))  # remove letters from matID

    split_col2 = split(Vendor_info['SKU'], '-')
    Vendor_info = Vendor_info.withColumn('MatID', split_col2.getItem(0))
    Vendor_info = Vendor_info.withColumn('MatID',
                                         regexp_replace(
                                             col("MatID"), "[ZNDF]",
                                             ""))  # remove letters from matID

    split_col = split(Subcat_info['SubCategory'], '-')
    split_col2 = split(Vendor_info['Vendor'], '-')
    Subcat_info = Subcat_info.withColumn('SubCategory', split_col.getItem(1))
    Vendor_info = Vendor_info.withColumn('Vendor', split_col2.getItem(1))
    # filter data
    df = df.select("Date", "Store", 'item', 'POS Gross Sales', 'POS Net Sales',
                   'POS Total Discount', 'POS Qty Sold', 'POS COGS (INV)')

    # Check only one store
    df = df.filter(df.Store == store_name)

    # Remove comma from integer (e.g. 1,333 to 1333)
    udf = UserDefinedFunction(lambda x: re.sub(',', '', x), StringType())
    #num_columns = ['TotalDiscount', 'QtySold', 'GrossSales', 'NetSales', 'COGS']
    df = df.select(*[udf(column).alias(column) for column in df.columns])

    # filter data, and keep only half years
    # Convert Date column to timestamp
    df = df.withColumn("Date", to_timestamp(df.Date, "yyyyMM"))
    df = df.filter(df.Date >= begin_date)
    df = df.filter(df.Date < end_date)  # April - Sep

    # separate Item name to SKU and ID
    split_col = split(df['item'], '-')
    df = df.withColumn('MatID', split_col.getItem(0))
    df = df.withColumn('MatID',
                       regexp_replace(col("MatID"), "[ZNDF]",
                                      ""))  # remove letters from matID
    df = df.withColumn('SKU', split_col.getItem(1))

    ### Rename column
    df = df.withColumnRenamed("Sales Type", "SalesType")
    df = df.withColumnRenamed("POS Gross Sales", "GrossSales")
    df = df.withColumnRenamed("POS Net Sales", "NetSales")
    df = df.withColumnRenamed("POS Total Discount", "TotalDiscount")
    df = df.withColumnRenamed("POS Qty Sold", "QtySold")
    df = df.withColumnRenamed("POS COGS (INV)", "COGS")

    # Assign all column names to `columns`
    columns = ['TotalDiscount', 'QtySold', 'GrossSales', 'NetSales', 'COGS']
    # Conver the `df` columns to `FloatType()`
    df = convertColumn(df, columns, FloatType())

    # drop unnecessary items
    columns_to_drop = ['item']
    df = df.drop(*columns_to_drop)
    # Convert Date column to timestamp
    df = df.withColumn("Date", to_timestamp(df.Date, "yyyyMM"))

    # Create the new columns
    df = df.withColumn("Price", df.GrossSales / df.QtySold)
    df = df.withColumn("FrontMargin", (df.GrossSales + df.COGS))
    df = df.withColumn("SellMargin", (df.NetSales + df.COGS))

    # add subcategory column
    df = df.join(Subcat_info.select("MatID", 'SubCategory'),
                 on=["MatID"],
                 how="left")
    df = df.join(Vendor_info.select("MatID", 'Vendor'),
                 on=["MatID"],
                 how="left")
    return df