def transform(self, X, y=None):
        import numpy as np
        from sklearn.decomposition import PCA
        import pysptools.noise as ns

        X = X.astype('float32')
        # apply brightness normalization
        # if raster
        if self.BrightnessNormalization == True:

            def norm(r):
                norm = r / np.sqrt(np.sum((r**2), 0))
                return norm

            if len(X.shape) == 3:
                X = np.apply_along_axis(norm, 2, X)
            # if 2D array
            if len(X.shape) == 2:
                X = np.apply_along_axis(norm, 0, X)
        w = ns.Whiten()
        wdata = w.apply(X)
        numBands = X.shape[2]
        h, w, numBands = wdata.shape
        X = np.reshape(wdata, (w * h, numBands))
        pca = PCA()
        mnf = pca.fit_transform(X)
        mnf = np.reshape(mnf, (h, w, numBands))
        mnf = mnf[:, :, :self.n_components]
        var = np.cumsum(
            np.round(pca.explained_variance_ratio_, decimals=4) * 100)
        return mnf, var
Exemplo n.º 2
0
def explained_variance(img):
    from sklearn.decomposition import PCA
    w = ns.Whiten()
    wdata = w.apply(img)
    numBands = r.count
    h, w, numBands = wdata.shape
    X = np.reshape(wdata, (w * h, numBands))
    pca = PCA()
    mnf = pca.fit_transform(X)
    return print(
        np.cumsum(np.round(pca.explained_variance_ratio_, decimals=4) * 100))
Exemplo n.º 3
0
def whiten(data):
    w = ns.Whiten()
    return w.apply(data)
Exemplo n.º 4
0
        explained_variance(img)

    else:
        if args['method'] == 1:
            # Load raster/convert to ndarray format
            name = os.path.basename(inImage)
            r = rasterio.open(inImage)
            r2 = r.read()
            # Apply Brightness Normalization if the option -p is added
            if args["preprop"] == True:
                r2 = np.apply_along_axis(BrigthnessNormalization, 0, r2)
            img = reshape_as_image(r2)
            # Apply MNF -m 1
            print("Creating MNF components of " + name)
            # Apply MNF namualy acording to pysptools
            w = ns.Whiten()
            wdata = w.apply(img)
            numBands = r.count
            h, w, numBands = wdata.shape
            X = np.reshape(wdata, (w * h, numBands))
            pca = PCA()
            mnf = pca.fit_transform(X)
            mnf = np.reshape(mnf, (h, w, numBands))
            if args["SavitzkyGolay"] == True:
                dn = ns.SavitzkyGolay()
                mnf[:, :, 1:2] = dn.denoise_bands(mnf[:, :, 1:2], 15, 2)
            mnf = mnf[:, :, :n_components]
            saveMNF(mnf, r)

            # Apply MNF coefficients to the other images
            for i in range(len(imageList)):