Exemplo n.º 1
0
    def scattered_volume_field(self, Jt, rho, qbx_forced_limit=None):
        """
        This will return an object array of six entries, the first three of which
        represent the electric, and the second three of which represent the
        magnetic field. This satisfies the time-domain Maxwell's equations
        as verified by :func:`sumpy.point_calculus.frequency_domain_maxwell`.
        """
        Jxyz = sym.cse(sym.tangential_to_xyz(Jt), "Jxyz")

        A = sym.S(self.kernel, Jxyz, k=self.k, qbx_forced_limit=qbx_forced_limit)
        phi = sym.S(self.kernel, rho, k=self.k, qbx_forced_limit=qbx_forced_limit)

        E_scat = 1j*self.k*A - sym.grad(3, phi)
        H_scat = sym.curl(A)

        return sym.flat_obj_array(E_scat, H_scat)
Exemplo n.º 2
0
    def scattered_volume_field(self, Jt, rho, qbx_forced_limit=None):
        """
        This will return an object array of six entries, the first three of which
        represent the electric, and the second three of which represent the
        magnetic field. This satisfies the time-domain Maxwell's equations
        as verified by :func:`sumpy.point_calculus.frequency_domain_maxwell`.
        """
        Jxyz = sym.cse(sym.tangential_to_xyz(Jt), "Jxyz")

        A = sym.S(self.kernel, Jxyz, k=self.k, qbx_forced_limit=qbx_forced_limit)
        phi = sym.S(self.kernel, rho, k=self.k, qbx_forced_limit=qbx_forced_limit)

        E_scat = 1j*self.k*A - sym.grad(3, phi)
        H_scat = sym.curl(A)

        return sym.join_fields(E_scat, H_scat)
Exemplo n.º 3
0
def nonlocal_integral_eq(
    mesh,
    scatterer_bdy_id,
    outer_bdy_id,
    wave_number,
    options_prefix=None,
    solver_parameters=None,
    fspace=None,
    vfspace=None,
    true_sol_grad_expr=None,
    actx=None,
    dgfspace=None,
    dgvfspace=None,
    meshmode_src_connection=None,
    qbx_kwargs=None,
):
    r"""
        see run_method for descriptions of unlisted args

        args:

        gamma and beta are used to precondition
        with the following equation:

        \Delta u - \kappa^2 \gamma u = 0
        (\partial_n - i\kappa\beta) u |_\Sigma = 0
    """
    # make sure we get outer bdy id as tuple in case it consists of multiple ids
    if isinstance(outer_bdy_id, int):
        outer_bdy_id = [outer_bdy_id]
    outer_bdy_id = tuple(outer_bdy_id)
    # away from the excluded region, but firedrake and meshmode point
    # into
    pyt_inner_normal_sign = -1

    ambient_dim = mesh.geometric_dimension()

    # {{{ Build src and tgt

    # build connection meshmode near src boundary -> src boundary inside meshmode
    from meshmode.discretization.poly_element import \
        InterpolatoryQuadratureSimplexGroupFactory
    from meshmode.discretization.connection import make_face_restriction
    factory = InterpolatoryQuadratureSimplexGroupFactory(
        dgfspace.finat_element.degree)
    src_bdy_connection = make_face_restriction(actx,
                                               meshmode_src_connection.discr,
                                               factory, scatterer_bdy_id)
    # source is a qbx layer potential
    from pytential.qbx import QBXLayerPotentialSource
    disable_refinement = (fspace.mesh().geometric_dimension() == 3)
    qbx = QBXLayerPotentialSource(src_bdy_connection.to_discr,
                                  **qbx_kwargs,
                                  _disable_refinement=disable_refinement)

    # get target indices and point-set
    target_indices, target = get_target_points_and_indices(
        fspace, outer_bdy_id)

    # }}}

    # build the operations
    from pytential import bind, sym
    r"""
    ..math:

    x \in \Sigma

    grad_op(x) =
        \nabla(
            \int_\Gamma(
                u(y) \partial_n H_0^{(1)}(\kappa |x - y|)
            )d\gamma(y)
        )
    """
    grad_op = pyt_inner_normal_sign * sym.grad(
        ambient_dim,
        sym.D(HelmholtzKernel(ambient_dim),
              sym.var("u"),
              k=sym.var("k"),
              qbx_forced_limit=None))
    r"""
    ..math:

    x \in \Sigma

    op(x) =
        i \kappa \cdot
        \int_\Gamma(
            u(y) \partial_n H_0^{(1)}(\kappa |x - y|)
        )d\gamma(y)
    """
    op = pyt_inner_normal_sign * 1j * sym.var("k") * (sym.D(
        HelmholtzKernel(ambient_dim),
        sym.var("u"),
        k=sym.var("k"),
        qbx_forced_limit=None))

    # bind the operations
    pyt_grad_op = bind((qbx, target), grad_op)
    pyt_op = bind((qbx, target), op)

    # }}}

    class MatrixFreeB(object):
        def __init__(self, A, pyt_grad_op, pyt_op, actx, kappa):
            """
            :arg kappa: The wave number
            """

            self.actx = actx
            self.k = kappa
            self.pyt_op = pyt_op
            self.pyt_grad_op = pyt_grad_op
            self.A = A
            self.meshmode_src_connection = meshmode_src_connection

            # {{{ Create some functions needed for multing
            self.x_fntn = Function(fspace)

            # CG
            self.potential_int = Function(fspace)
            self.potential_int.dat.data[:] = 0.0
            self.grad_potential_int = Function(vfspace)
            self.grad_potential_int.dat.data[:] = 0.0
            self.pyt_result = Function(fspace)

            self.n = FacetNormal(mesh)
            self.v = TestFunction(fspace)

            # some meshmode ones
            self.x_mm_fntn = self.meshmode_src_connection.discr.empty(
                self.actx, dtype='c')

            # }}}

        def mult(self, mat, x, y):
            # Copy function data into the fivredrake function
            self.x_fntn.dat.data[:] = x[:]
            # Transfer the function to meshmode
            self.meshmode_src_connection.from_firedrake(project(
                self.x_fntn, dgfspace),
                                                        out=self.x_mm_fntn)
            # Restrict to boundary
            x_mm_fntn_on_bdy = src_bdy_connection(self.x_mm_fntn)

            # Apply the operation
            potential_int_mm = self.pyt_op(self.actx,
                                           u=x_mm_fntn_on_bdy,
                                           k=self.k)
            grad_potential_int_mm = self.pyt_grad_op(self.actx,
                                                     u=x_mm_fntn_on_bdy,
                                                     k=self.k)
            # Store in firedrake
            self.potential_int.dat.data[target_indices] = potential_int_mm.get(
            )
            for dim in range(grad_potential_int_mm.shape[0]):
                self.grad_potential_int.dat.data[
                    target_indices, dim] = grad_potential_int_mm[dim].get()

            # Integrate the potential
            r"""
            Compute the inner products using firedrake. Note this
            will be subtracted later, hence appears off by a sign.

            .. math::

                \langle
                    n(x) \cdot \nabla(
                        \int_\Gamma(
                            u(y) \partial_n H_0^{(1)}(\kappa |x - y|)
                        )d\gamma(y)
                    ), v
                \rangle_\Sigma
                - \langle
                    i \kappa \cdot
                    \int_\Gamma(
                        u(y) \partial_n H_0^{(1)}(\kappa |x - y|)
                    )d\gamma(y), v
                \rangle_\Sigma
            """
            self.pyt_result = assemble(
                inner(inner(self.grad_potential_int, self.n), self.v) *
                ds(outer_bdy_id) -
                inner(self.potential_int, self.v) * ds(outer_bdy_id))

            # y <- Ax - evaluated potential
            self.A.mult(x, y)
            with self.pyt_result.dat.vec_ro as ep:
                y.axpy(-1, ep)

    # {{{ Compute normal helmholtz operator
    u = TrialFunction(fspace)
    v = TestFunction(fspace)
    r"""
    .. math::

        \langle
            \nabla u, \nabla v
        \rangle
        - \kappa^2 \cdot \langle
            u, v
        \rangle
        - i \kappa \langle
            u, v
        \rangle_\Sigma
    """
    a = inner(grad(u), grad(v)) * dx \
        - Constant(wave_number**2) * inner(u, v) * dx \
        - Constant(1j * wave_number) * inner(u, v) * ds(outer_bdy_id)

    # get the concrete matrix from a general bilinear form
    A = assemble(a).M.handle
    # }}}

    # {{{ Setup Python matrix
    B = PETSc.Mat().create()

    # build matrix context
    Bctx = MatrixFreeB(A, pyt_grad_op, pyt_op, actx, wave_number)

    # set up B as same size as A
    B.setSizes(*A.getSizes())

    B.setType(B.Type.PYTHON)
    B.setPythonContext(Bctx)
    B.setUp()
    # }}}

    # {{{ Create rhs

    # Remember f is \partial_n(true_sol)|_\Gamma
    # so we just need to compute \int_\Gamma\partial_n(true_sol) H(x-y)

    sigma = sym.make_sym_vector("sigma", ambient_dim)
    r"""
    ..math:

    x \in \Sigma

    grad_op(x) =
        \nabla(
            \int_\Gamma(
                f(y) H_0^{(1)}(\kappa |x - y|)
            )d\gamma(y)
        )
    """
    grad_op = pyt_inner_normal_sign * \
        sym.grad(ambient_dim, sym.S(HelmholtzKernel(ambient_dim),
                                    sym.n_dot(sigma),
                                    k=sym.var("k"), qbx_forced_limit=None))
    r"""
    ..math:

    x \in \Sigma

    op(x) =
        i \kappa \cdot
        \int_\Gamma(
            f(y) H_0^{(1)}(\kappa |x - y|)
        )d\gamma(y)
        )
    """
    op = 1j * sym.var("k") * pyt_inner_normal_sign * \
        sym.S(HelmholtzKernel(ambient_dim),
              sym.n_dot(sigma),
              k=sym.var("k"),
              qbx_forced_limit=None)

    rhs_grad_op = bind((qbx, target), grad_op)
    rhs_op = bind((qbx, target), op)

    # Transfer to meshmode
    metadata = {'quadrature_degree': 2 * fspace.ufl_element().degree()}
    dg_true_sol_grad = project(true_sol_grad_expr,
                               dgvfspace,
                               form_compiler_parameters=metadata)
    true_sol_grad_mm = meshmode_src_connection.from_firedrake(dg_true_sol_grad,
                                                              actx=actx)
    true_sol_grad_mm = src_bdy_connection(true_sol_grad_mm)
    # Apply the operations
    f_grad_convoluted_mm = rhs_grad_op(actx,
                                       sigma=true_sol_grad_mm,
                                       k=wave_number)
    f_convoluted_mm = rhs_op(actx, sigma=true_sol_grad_mm, k=wave_number)
    # Transfer function back to firedrake
    f_grad_convoluted = Function(vfspace)
    f_convoluted = Function(fspace)
    f_grad_convoluted.dat.data[:] = 0.0
    f_convoluted.dat.data[:] = 0.0

    for dim in range(f_grad_convoluted_mm.shape[0]):
        f_grad_convoluted.dat.data[target_indices,
                                   dim] = f_grad_convoluted_mm[dim].get()
    f_convoluted.dat.data[target_indices] = f_convoluted_mm.get()
    r"""
        \langle
            f, v
        \rangle_\Gamma
        + \langle
            i \kappa \cdot \int_\Gamma(
                f(y) H_0^{(1)}(\kappa |x - y|)
            )d\gamma(y), v
        \rangle_\Sigma
        - \langle
            n(x) \cdot \nabla(
                \int_\Gamma(
                    f(y) H_0^{(1)}(\kappa |x - y|)
                )d\gamma(y)
            ), v
        \rangle_\Sigma
    """
    rhs_form = inner(inner(true_sol_grad_expr, FacetNormal(mesh)),
                     v) * ds(scatterer_bdy_id, metadata=metadata) \
        + inner(f_convoluted, v) * ds(outer_bdy_id) \
        - inner(inner(f_grad_convoluted, FacetNormal(mesh)),
                v) * ds(outer_bdy_id)

    rhs = assemble(rhs_form)

    # {{{ set up a solver:
    solution = Function(fspace, name="Computed Solution")

    #       {{{ Used for preconditioning
    if 'gamma' in solver_parameters or 'beta' in solver_parameters:
        gamma = complex(solver_parameters.pop('gamma', 1.0))

        import cmath
        beta = complex(solver_parameters.pop('beta', cmath.sqrt(gamma)))

        p = inner(grad(u), grad(v)) * dx \
            - Constant(wave_number**2 * gamma) * inner(u, v) * dx \
            - Constant(1j * wave_number * beta) * inner(u, v) * ds(outer_bdy_id)
        P = assemble(p).M.handle

    else:
        P = A
    #       }}}

    # Set up options to contain solver parameters:
    ksp = PETSc.KSP().create()
    if solver_parameters['pc_type'] == 'pyamg':
        del solver_parameters['pc_type']  # We are using the AMG preconditioner

        pyamg_tol = solver_parameters.get('pyamg_tol', None)
        if pyamg_tol is not None:
            pyamg_tol = float(pyamg_tol)
        pyamg_maxiter = solver_parameters.get('pyamg_maxiter', None)
        if pyamg_maxiter is not None:
            pyamg_maxiter = int(pyamg_maxiter)
        ksp.setOperators(B)
        ksp.setUp()
        pc = ksp.pc
        pc.setType(pc.Type.PYTHON)
        pc.setPythonContext(
            AMGTransmissionPreconditioner(wave_number,
                                          fspace,
                                          A,
                                          tol=pyamg_tol,
                                          maxiter=pyamg_maxiter,
                                          use_plane_waves=True))
    # Otherwise use regular preconditioner
    else:
        ksp.setOperators(B, P)

    options_manager = OptionsManager(solver_parameters, options_prefix)
    options_manager.set_from_options(ksp)

    import petsc4py.PETSc
    petsc4py.PETSc.Sys.popErrorHandler()
    with rhs.dat.vec_ro as b:
        with solution.dat.vec as x:
            ksp.solve(b, x)
    # }}}

    return ksp, solution
Exemplo n.º 4
0
def run_int_eq_test(cl_ctx, queue, case, resolution, visualize):
    mesh = case.get_mesh(resolution, case.target_order)
    print("%d elements" % mesh.nelements)

    from pytential.qbx import QBXLayerPotentialSource
    from meshmode.discretization import Discretization
    from meshmode.discretization.poly_element import \
            InterpolatoryQuadratureSimplexGroupFactory
    pre_density_discr = Discretization(
            cl_ctx, mesh,
            InterpolatoryQuadratureSimplexGroupFactory(case.target_order))

    source_order = 4*case.target_order

    refiner_extra_kwargs = {}

    qbx_lpot_kwargs = {}
    if case.fmm_backend is None:
        qbx_lpot_kwargs["fmm_order"] = False
    else:
        if hasattr(case, "fmm_tol"):
            from sumpy.expansion.level_to_order import SimpleExpansionOrderFinder
            qbx_lpot_kwargs["fmm_level_to_order"] = SimpleExpansionOrderFinder(
                    case.fmm_tol)

        elif hasattr(case, "fmm_order"):
            qbx_lpot_kwargs["fmm_order"] = case.fmm_order
        else:
            qbx_lpot_kwargs["fmm_order"] = case.qbx_order + 5

    qbx = QBXLayerPotentialSource(
            pre_density_discr,
            fine_order=source_order,
            qbx_order=case.qbx_order,

            _box_extent_norm=getattr(case, "box_extent_norm", None),
            _from_sep_smaller_crit=getattr(case, "from_sep_smaller_crit", None),
            _from_sep_smaller_min_nsources_cumul=30,
            fmm_backend=case.fmm_backend, **qbx_lpot_kwargs)

    if case.use_refinement:
        if case.k != 0 and getattr(case, "refine_on_helmholtz_k", True):
            refiner_extra_kwargs["kernel_length_scale"] = 5/case.k

        if hasattr(case, "scaled_max_curvature_threshold"):
            refiner_extra_kwargs["_scaled_max_curvature_threshold"] = \
                    case.scaled_max_curvature_threshold

        if hasattr(case, "expansion_disturbance_tolerance"):
            refiner_extra_kwargs["_expansion_disturbance_tolerance"] = \
                    case.expansion_disturbance_tolerance

        if hasattr(case, "refinement_maxiter"):
            refiner_extra_kwargs["maxiter"] = case.refinement_maxiter

        #refiner_extra_kwargs["visualize"] = True

        print("%d elements before refinement" % pre_density_discr.mesh.nelements)
        qbx, _ = qbx.with_refinement(**refiner_extra_kwargs)
        print("%d stage-1 elements after refinement"
                % qbx.density_discr.mesh.nelements)
        print("%d stage-2 elements after refinement"
                % qbx.stage2_density_discr.mesh.nelements)
        print("quad stage-2 elements have %d nodes"
                % qbx.quad_stage2_density_discr.groups[0].nunit_nodes)

    density_discr = qbx.density_discr

    if hasattr(case, "visualize_geometry") and case.visualize_geometry:
        bdry_normals = bind(
                density_discr, sym.normal(mesh.ambient_dim)
                )(queue).as_vector(dtype=object)

        bdry_vis = make_visualizer(queue, density_discr, case.target_order)
        bdry_vis.write_vtk_file("geometry.vtu", [
            ("normals", bdry_normals)
            ])

    # {{{ plot geometry

    if 0:
        if mesh.ambient_dim == 2:
            # show geometry, centers, normals
            nodes_h = density_discr.nodes().get(queue=queue)
            pt.plot(nodes_h[0], nodes_h[1], "x-")
            normal = bind(density_discr, sym.normal(2))(queue).as_vector(np.object)
            pt.quiver(nodes_h[0], nodes_h[1],
                    normal[0].get(queue), normal[1].get(queue))
            pt.gca().set_aspect("equal")
            pt.show()

        elif mesh.ambient_dim == 3:
            bdry_vis = make_visualizer(queue, density_discr, case.target_order+3)

            bdry_normals = bind(density_discr, sym.normal(3))(queue)\
                    .as_vector(dtype=object)

            bdry_vis.write_vtk_file("pre-solve-source-%s.vtu" % resolution, [
                ("bdry_normals", bdry_normals),
                ])

        else:
            raise ValueError("invalid mesh dim")

    # }}}

    # {{{ set up operator

    from pytential.symbolic.pde.scalar import (
            DirichletOperator,
            NeumannOperator)

    from sumpy.kernel import LaplaceKernel, HelmholtzKernel
    if case.k:
        knl = HelmholtzKernel(mesh.ambient_dim)
        knl_kwargs = {"k": sym.var("k")}
        concrete_knl_kwargs = {"k": case.k}
    else:
        knl = LaplaceKernel(mesh.ambient_dim)
        knl_kwargs = {}
        concrete_knl_kwargs = {}

    if knl.is_complex_valued:
        dtype = np.complex128
    else:
        dtype = np.float64

    loc_sign = +1 if case.prob_side in [+1, "scat"] else -1

    if case.bc_type == "dirichlet":
        op = DirichletOperator(knl, loc_sign, use_l2_weighting=True,
                kernel_arguments=knl_kwargs)
    elif case.bc_type == "neumann":
        op = NeumannOperator(knl, loc_sign, use_l2_weighting=True,
                 use_improved_operator=False, kernel_arguments=knl_kwargs)
    else:
        assert False

    op_u = op.operator(sym.var("u"))

    # }}}

    # {{{ set up test data

    if case.prob_side == -1:
        test_src_geo_radius = case.outer_radius
        test_tgt_geo_radius = case.inner_radius
    elif case.prob_side == +1:
        test_src_geo_radius = case.inner_radius
        test_tgt_geo_radius = case.outer_radius
    elif case.prob_side == "scat":
        test_src_geo_radius = case.outer_radius
        test_tgt_geo_radius = case.outer_radius
    else:
        raise ValueError("unknown problem_side")

    point_sources = make_circular_point_group(
            mesh.ambient_dim, 10, test_src_geo_radius,
            func=lambda x: x**1.5)
    test_targets = make_circular_point_group(
            mesh.ambient_dim, 20, test_tgt_geo_radius)

    np.random.seed(22)
    source_charges = np.random.randn(point_sources.shape[1])
    source_charges[-1] = -np.sum(source_charges[:-1])
    source_charges = source_charges.astype(dtype)
    assert np.sum(source_charges) < 1e-15

    source_charges_dev = cl.array.to_device(queue, source_charges)

    # }}}

    # {{{ establish BCs

    from pytential.source import PointPotentialSource
    from pytential.target import PointsTarget

    point_source = PointPotentialSource(cl_ctx, point_sources)

    pot_src = sym.IntG(
        # FIXME: qbx_forced_limit--really?
        knl, sym.var("charges"), qbx_forced_limit=None, **knl_kwargs)

    test_direct = bind((point_source, PointsTarget(test_targets)), pot_src)(
            queue, charges=source_charges_dev, **concrete_knl_kwargs)

    if case.bc_type == "dirichlet":
        bc = bind((point_source, density_discr), pot_src)(
                queue, charges=source_charges_dev, **concrete_knl_kwargs)

    elif case.bc_type == "neumann":
        bc = bind(
                (point_source, density_discr),
                sym.normal_derivative(
                    qbx.ambient_dim, pot_src, where=sym.DEFAULT_TARGET)
                )(queue, charges=source_charges_dev, **concrete_knl_kwargs)

    # }}}

    # {{{ solve

    bound_op = bind(qbx, op_u)

    rhs = bind(density_discr, op.prepare_rhs(sym.var("bc")))(queue, bc=bc)

    try:
        from pytential.solve import gmres
        gmres_result = gmres(
                bound_op.scipy_op(queue, "u", dtype, **concrete_knl_kwargs),
                rhs,
                tol=case.gmres_tol,
                progress=True,
                hard_failure=True,
                stall_iterations=50, no_progress_factor=1.05)
    except QBXTargetAssociationFailedException as e:
        bdry_vis = make_visualizer(queue, density_discr, case.target_order+3)

        bdry_vis.write_vtk_file("failed-targets-%s.vtu" % resolution, [
            ("failed_targets", e.failed_target_flags),
            ])
        raise

    print("gmres state:", gmres_result.state)
    weighted_u = gmres_result.solution

    # }}}

    # {{{ build matrix for spectrum check

    if 0:
        from sumpy.tools import build_matrix
        mat = build_matrix(
                bound_op.scipy_op(
                    queue, arg_name="u", dtype=dtype, k=case.k))
        w, v = la.eig(mat)
        if 0:
            pt.imshow(np.log10(1e-20+np.abs(mat)))
            pt.colorbar()
            pt.show()

        #assert abs(s[-1]) < 1e-13, "h
        #assert abs(s[-2]) > 1e-7
        #from pudb import set_trace; set_trace()

    # }}}

    if case.prob_side != "scat":
        # {{{ error check

        points_target = PointsTarget(test_targets)
        bound_tgt_op = bind((qbx, points_target),
                op.representation(sym.var("u")))

        test_via_bdry = bound_tgt_op(queue, u=weighted_u, k=case.k)

        err = test_via_bdry - test_direct

        err = err.get()
        test_direct = test_direct.get()
        test_via_bdry = test_via_bdry.get()

        # {{{ remove effect of net source charge

        if case.k == 0 and case.bc_type == "neumann" and loc_sign == -1:

            # remove constant offset in interior Laplace Neumann error
            tgt_ones = np.ones_like(test_direct)
            tgt_ones = tgt_ones/la.norm(tgt_ones)
            err = err - np.vdot(tgt_ones, err)*tgt_ones

        # }}}

        rel_err_2 = la.norm(err)/la.norm(test_direct)
        rel_err_inf = la.norm(err, np.inf)/la.norm(test_direct, np.inf)

        # }}}

        print("rel_err_2: %g rel_err_inf: %g" % (rel_err_2, rel_err_inf))

    else:
        rel_err_2 = None
        rel_err_inf = None

    # {{{ test gradient

    if case.check_gradient and case.prob_side != "scat":
        bound_grad_op = bind((qbx, points_target),
                op.representation(
                    sym.var("u"),
                    map_potentials=lambda pot: sym.grad(mesh.ambient_dim, pot),
                    qbx_forced_limit=None))

        #print(bound_t_deriv_op.code)

        grad_from_src = bound_grad_op(
                queue, u=weighted_u, **concrete_knl_kwargs)

        grad_ref = (bind(
                (point_source, points_target),
                sym.grad(mesh.ambient_dim, pot_src)
                )(queue, charges=source_charges_dev, **concrete_knl_kwargs)
                )

        grad_err = (grad_from_src - grad_ref)

        rel_grad_err_inf = (
                la.norm(grad_err[0].get(), np.inf)
                / la.norm(grad_ref[0].get(), np.inf))

        print("rel_grad_err_inf: %g" % rel_grad_err_inf)

    # }}}

    # {{{ test tangential derivative

    if case.check_tangential_deriv and case.prob_side != "scat":
        bound_t_deriv_op = bind(qbx,
                op.representation(
                    sym.var("u"),
                    map_potentials=lambda pot: sym.tangential_derivative(2, pot),
                    qbx_forced_limit=loc_sign))

        #print(bound_t_deriv_op.code)

        tang_deriv_from_src = bound_t_deriv_op(
                queue, u=weighted_u, **concrete_knl_kwargs).as_scalar().get()

        tang_deriv_ref = (bind(
                (point_source, density_discr),
                sym.tangential_derivative(2, pot_src)
                )(queue, charges=source_charges_dev, **concrete_knl_kwargs)
                .as_scalar().get())

        if 0:
            pt.plot(tang_deriv_ref.real)
            pt.plot(tang_deriv_from_src.real)
            pt.show()

        td_err = (tang_deriv_from_src - tang_deriv_ref)

        rel_td_err_inf = la.norm(td_err, np.inf)/la.norm(tang_deriv_ref, np.inf)

        print("rel_td_err_inf: %g" % rel_td_err_inf)

    else:
        rel_td_err_inf = None

    # }}}

    # {{{ any-D file plotting

    if visualize:
        bdry_vis = make_visualizer(queue, density_discr, case.target_order+3)

        bdry_normals = bind(density_discr, sym.normal(qbx.ambient_dim))(queue)\
                .as_vector(dtype=object)

        sym_sqrt_j = sym.sqrt_jac_q_weight(density_discr.ambient_dim)
        u = bind(density_discr, sym.var("u")/sym_sqrt_j)(queue, u=weighted_u)

        bdry_vis.write_vtk_file("source-%s.vtu" % resolution, [
            ("u", u),
            ("bc", bc),
            #("bdry_normals", bdry_normals),
            ])

        from sumpy.visualization import make_field_plotter_from_bbox  # noqa
        from meshmode.mesh.processing import find_bounding_box

        vis_grid_spacing = (0.1, 0.1, 0.1)[:qbx.ambient_dim]
        if hasattr(case, "vis_grid_spacing"):
            vis_grid_spacing = case.vis_grid_spacing
        vis_extend_factor = 0.2
        if hasattr(case, "vis_extend_factor"):
            vis_grid_spacing = case.vis_grid_spacing

        fplot = make_field_plotter_from_bbox(
                find_bounding_box(mesh),
                h=vis_grid_spacing,
                extend_factor=vis_extend_factor)

        qbx_tgt_tol = qbx.copy(target_association_tolerance=0.15)
        from pytential.target import PointsTarget

        try:
            solved_pot = bind(
                    (qbx_tgt_tol, PointsTarget(fplot.points)),
                    op.representation(sym.var("u"))
                    )(queue, u=weighted_u, k=case.k)
        except QBXTargetAssociationFailedException as e:
            fplot.write_vtk_file(
                    "failed-targets.vts",
                    [
                        ("failed_targets", e.failed_target_flags.get(queue))
                        ])
            raise

        from sumpy.kernel import LaplaceKernel
        ones_density = density_discr.zeros(queue)
        ones_density.fill(1)
        indicator = bind(
                (qbx_tgt_tol, PointsTarget(fplot.points)),
                -sym.D(LaplaceKernel(density_discr.ambient_dim),
                    sym.var("sigma"),
                    qbx_forced_limit=None))(
                queue, sigma=ones_density).get()

        solved_pot = solved_pot.get()

        true_pot = bind((point_source, PointsTarget(fplot.points)), pot_src)(
                queue, charges=source_charges_dev, **concrete_knl_kwargs).get()

        #fplot.show_scalar_in_mayavi(solved_pot.real, max_val=5)
        if case.prob_side == "scat":
            fplot.write_vtk_file(
                    "potential-%s.vts" % resolution,
                    [
                        ("pot_scattered", solved_pot),
                        ("pot_incoming", -true_pot),
                        ("indicator", indicator),
                        ]
                    )
        else:
            fplot.write_vtk_file(
                    "potential-%s.vts" % resolution,
                    [
                        ("solved_pot", solved_pot),
                        ("true_pot", true_pot),
                        ("indicator", indicator),
                        ]
                    )

    # }}}

    class Result(Record):
        pass

    return Result(
            h_max=qbx.h_max,
            rel_err_2=rel_err_2,
            rel_err_inf=rel_err_inf,
            rel_td_err_inf=rel_td_err_inf,
            gmres_result=gmres_result)
Exemplo n.º 5
0
        # }}}

        print("rel_err_2: %g rel_err_inf: %g" % (rel_err_2, rel_err_inf))

    else:
        rel_err_2 = None
        rel_err_inf = None

    # {{{ test gradient

    if case.check_gradient and case.prob_side != "scat":
        bound_grad_op = bind(
            (qbx, points_target),
            op.representation(
                sym.var("u"),
                map_potentials=lambda pot: sym.grad(mesh.ambient_dim, pot),
                qbx_forced_limit=None))

        #print(bound_t_deriv_op.code)

        grad_from_src = bound_grad_op(queue,
                                      u=weighted_u,
                                      **concrete_knl_kwargs)

        grad_ref = (bind((point_source, points_target),
                         sym.grad(mesh.ambient_dim,
                                  pot_src))(queue,
                                            charges=source_charges_dev,
                                            **concrete_knl_kwargs))

        grad_err = (grad_from_src - grad_ref)
Exemplo n.º 6
0
        rel_err_inf = la.norm(err, np.inf) / la.norm(test_direct, np.inf)

        logger.info("rel_err_2: %.5e rel_err_inf: %.5e", rel_err_2,
                    rel_err_inf)
    else:
        rel_err_2 = None
        rel_err_inf = None

    # }}}

    # {{{ test gradient

    if case.check_gradient and case.side != "scat":
        sym_grad_op = op.representation(
            sym_u,
            map_potentials=lambda p: sym.grad(ambient_dim, p),
            qbx_forced_limit=None)

        grad_from_src = bind(places,
                             sym_grad_op,
                             auto_where=(case.name, "point_target"))(
                                 actx,
                                 u=weighted_u,
                                 **case.knl_concrete_kwargs)
        grad_ref = bind(places,
                        sym.grad(ambient_dim, pot_src),
                        auto_where=("point_source", "point_target"))(
                            actx,
                            charges=source_charges_dev,
                            **case.knl_concrete_kwargs)
Exemplo n.º 7
0
def nonlocal_integral_eq(
    mesh,
    scatterer_bdy_id,
    outer_bdy_id,
    wave_number,
    options_prefix=None,
    solver_parameters=None,
    fspace=None,
    vfspace=None,
    true_sol_grad=None,
    queue=None,
    fspace_analog=None,
    qbx_kwargs=None,
):
    r"""
        see run_method for descriptions of unlisted args

        args:

        :arg queue: A command queue for the computing context

        gamma and beta are used to precondition
        with the following equation:

        \Delta u - \kappa^2 \gamma u = 0
        (\partial_n - i\kappa\beta) u |_\Sigma = 0
    """
    with_refinement = True
    # away from the excluded region, but firedrake and meshmode point
    # into
    pyt_inner_normal_sign = -1

    ambient_dim = mesh.geometric_dimension()

    # {{{ Create operator
    from pytential import sym
    r"""
    ..math:

    x \in \Sigma

    grad_op(x) =
        \nabla(
            \int_\Gamma(
                u(y) \partial_n H_0^{(1)}(\kappa |x - y|)
            )d\gamma(y)
        )
    """
    grad_op = pyt_inner_normal_sign * sym.grad(
        ambient_dim,
        sym.D(HelmholtzKernel(ambient_dim),
              sym.var("u"),
              k=sym.var("k"),
              qbx_forced_limit=None))
    r"""
    ..math:

    x \in \Sigma

    op(x) =
        i \kappa \cdot
        \int_\Gamma(
            u(y) \partial_n H_0^{(1)}(\kappa |x - y|)
        )d\gamma(y)
    """
    op = pyt_inner_normal_sign * 1j * sym.var("k") * (sym.D(
        HelmholtzKernel(ambient_dim),
        sym.var("u"),
        k=sym.var("k"),
        qbx_forced_limit=None))

    pyt_grad_op = fd2mm.fd_bind(
        queue.context,
        fspace_analog,
        grad_op,
        source=(fspace, scatterer_bdy_id),
        target=(vfspace, outer_bdy_id),
        with_refinement=with_refinement,
        qbx_kwargs=qbx_kwargs,
    )

    pyt_op = fd2mm.fd_bind(
        queue.context,
        fspace_analog,
        op,
        source=(fspace, scatterer_bdy_id),
        target=(fspace, outer_bdy_id),
        with_refinement=with_refinement,
        qbx_kwargs=qbx_kwargs,
    )

    # }}}

    class MatrixFreeB(object):
        def __init__(self, A, pyt_grad_op, pyt_op, queue, kappa):
            """
            :arg kappa: The wave number
            """

            self.queue = queue
            self.k = kappa
            self.pyt_op = pyt_op
            self.pyt_grad_op = pyt_grad_op
            self.A = A

            # {{{ Create some functions needed for multing
            self.x_fntn = Function(fspace)

            self.potential_int = Function(fspace)
            self.potential_int.dat.data[:] = 0.0
            self.grad_potential_int = Function(vfspace)
            self.grad_potential_int.dat.data[:] = 0.0
            self.pyt_result = Function(fspace)

            self.n = FacetNormal(mesh)
            self.v = TestFunction(fspace)
            # }}}

        def mult(self, mat, x, y):
            # Perform pytential operation
            self.x_fntn.dat.data[:] = x[:]

            self.pyt_op(self.queue,
                        self.potential_int,
                        u=self.x_fntn,
                        k=self.k)
            self.pyt_grad_op(self.queue,
                             self.grad_potential_int,
                             u=self.x_fntn,
                             k=self.k)

            # Integrate the potential
            r"""
            Compute the inner products using firedrake. Note this
            will be subtracted later, hence appears off by a sign.

            .. math::

                \langle
                    n(x) \cdot \nabla(
                        \int_\Gamma(
                            u(y) \partial_n H_0^{(1)}(\kappa |x - y|)
                        )d\gamma(y)
                    ), v
                \rangle_\Sigma
                - \langle
                    i \kappa \cdot
                    \int_\Gamma(
                        u(y) \partial_n H_0^{(1)}(\kappa |x - y|)
                    )d\gamma(y), v
                \rangle_\Sigma
            """
            self.pyt_result = assemble(
                inner(inner(self.grad_potential_int, self.n), self.v) *
                ds(outer_bdy_id) -
                inner(self.potential_int, self.v) * ds(outer_bdy_id))

            # y <- Ax - evaluated potential
            self.A.mult(x, y)
            with self.pyt_result.dat.vec_ro as ep:
                y.axpy(-1, ep)

    # {{{ Compute normal helmholtz operator
    u = TrialFunction(fspace)
    v = TestFunction(fspace)
    r"""
    .. math::

        \langle
            \nabla u, \nabla v
        \rangle
        - \kappa^2 \cdot \langle
            u, v
        \rangle
        - i \kappa \langle
            u, v
        \rangle_\Sigma
    """
    a = inner(grad(u), grad(v)) * dx \
        - Constant(wave_number**2) * inner(u, v) * dx \
        - Constant(1j * wave_number) * inner(u, v) * ds(outer_bdy_id)

    # get the concrete matrix from a general bilinear form
    A = assemble(a).M.handle
    # }}}

    # {{{ Setup Python matrix
    B = PETSc.Mat().create()

    # build matrix context
    Bctx = MatrixFreeB(A, pyt_grad_op, pyt_op, queue, wave_number)

    # set up B as same size as A
    B.setSizes(*A.getSizes())

    B.setType(B.Type.PYTHON)
    B.setPythonContext(Bctx)
    B.setUp()
    # }}}

    # {{{ Create rhs

    # Remember f is \partial_n(true_sol)|_\Gamma
    # so we just need to compute \int_\Gamma\partial_n(true_sol) H(x-y)
    from pytential import sym

    sigma = sym.make_sym_vector("sigma", ambient_dim)
    r"""
    ..math:

    x \in \Sigma

    grad_op(x) =
        \nabla(
            \int_\Gamma(
                f(y) H_0^{(1)}(\kappa |x - y|)
            )d\gamma(y)
        )
    """
    grad_op = pyt_inner_normal_sign * \
        sym.grad(ambient_dim, sym.S(HelmholtzKernel(ambient_dim),
                                    sym.n_dot(sigma),
                                    k=sym.var("k"), qbx_forced_limit=None))
    r"""
    ..math:

    x \in \Sigma

    op(x) =
        i \kappa \cdot
        \int_\Gamma(
            f(y) H_0^{(1)}(\kappa |x - y|)
        )d\gamma(y)
        )
    """
    op = 1j * sym.var("k") * pyt_inner_normal_sign * \
        sym.S(HelmholtzKernel(ambient_dim),
              sym.n_dot(sigma),
              k=sym.var("k"),
              qbx_forced_limit=None)

    rhs_grad_op = fd2mm.fd_bind(
        queue.context,
        fspace_analog,
        grad_op,
        source=(vfspace, scatterer_bdy_id),
        target=(vfspace, outer_bdy_id),
        with_refinement=with_refinement,
        qbx_kwargs=qbx_kwargs,
    )
    rhs_op = fd2mm.fd_bind(
        queue.context,
        fspace_analog,
        op,
        source=(vfspace, scatterer_bdy_id),
        target=(fspace, outer_bdy_id),
        with_refinement=with_refinement,
        qbx_kwargs=qbx_kwargs,
    )

    f_grad_convoluted = Function(vfspace)
    f_convoluted = Function(fspace)
    rhs_grad_op(queue, f_grad_convoluted, sigma=true_sol_grad, k=wave_number)
    rhs_op(queue, f_convoluted, sigma=true_sol_grad, k=wave_number)
    r"""
        \langle
            f, v
        \rangle_\Gamma
        + \langle
            i \kappa \cdot \int_\Gamma(
                f(y) H_0^{(1)}(\kappa |x - y|)
            )d\gamma(y), v
        \rangle_\Sigma
        - \langle
            n(x) \cdot \nabla(
                \int_\Gamma(
                    f(y) H_0^{(1)}(\kappa |x - y|)
                )d\gamma(y)
            ), v
        \rangle_\Sigma
    """
    rhs_form = inner(inner(true_sol_grad, FacetNormal(mesh)),
                     v) * ds(scatterer_bdy_id) \
        + inner(f_convoluted, v) * ds(outer_bdy_id) \
        - inner(inner(f_grad_convoluted, FacetNormal(mesh)),
                v) * ds(outer_bdy_id)

    rhs = assemble(rhs_form)

    # {{{ set up a solver:
    solution = Function(fspace, name="Computed Solution")

    #       {{{ Used for preconditioning
    if 'gamma' in solver_parameters or 'beta' in solver_parameters:
        gamma = complex(solver_parameters.pop('gamma', 1.0))

        import cmath
        beta = complex(solver_parameters.pop('beta', cmath.sqrt(gamma)))

        p = inner(grad(u), grad(v)) * dx \
            - Constant(wave_number**2 * gamma) * inner(u, v) * dx \
            - Constant(1j * wave_number * beta) * inner(u, v) * ds(outer_bdy_id)
        P = assemble(p).M.handle

    else:
        P = A
    #       }}}

    # Set up options to contain solver parameters:
    ksp = PETSc.KSP().create()
    if solver_parameters['pc_type'] == 'pyamg':
        del solver_parameters['pc_type']  # We are using the AMG preconditioner

        pyamg_tol = solver_parameters.get('pyamg_tol', None)
        if pyamg_tol is not None:
            pyamg_tol = float(pyamg_tol)
        pyamg_maxiter = solver_parameters.get('pyamg_maxiter', None)
        if pyamg_maxiter is not None:
            pyamg_maxiter = int(pyamg_maxiter)
        ksp.setOperators(B)
        ksp.setUp()
        pc = ksp.pc
        pc.setType(pc.Type.PYTHON)
        pc.setPythonContext(
            AMGTransmissionPreconditioner(wave_number,
                                          fspace,
                                          A,
                                          tol=pyamg_tol,
                                          maxiter=pyamg_maxiter,
                                          use_plane_waves=True))
    # Otherwise use regular preconditioner
    else:
        ksp.setOperators(B, P)

    options_manager = OptionsManager(solver_parameters, options_prefix)
    options_manager.set_from_options(ksp)

    with rhs.dat.vec_ro as b:
        with solution.dat.vec as x:
            ksp.solve(b, x)
    # }}}

    return ksp, solution
Exemplo n.º 8
0
def compute_biharmonic_extension(queue,
                                 target_discr,
                                 qbx,
                                 density_discr,
                                 f,
                                 fx,
                                 fy,
                                 target_association_tolerance=0.05):
    """Biharmoc extension. Currently only support
    interior domains in 2D (i.e., extension is on the exterior).
    """
    # pylint: disable=invalid-unary-operand-type
    dim = 2
    queue = setup_command_queue(queue=queue)
    qbx_forced_limit = 1

    normal = get_normal_vectors(queue, density_discr, loc_sign=1)

    bdry_op_sym = get_extension_bie_symbolic_operator(loc_sign=1)
    bound_op = bind(qbx, bdry_op_sym)

    bc = [fy, -fx]
    bvp_rhs = bind(qbx, sym.make_sym_vector("bc", dim))(queue, bc=bc)
    gmres_result = gmres(bound_op.scipy_op(queue,
                                           "sigma",
                                           np.float64,
                                           mu=1.,
                                           normal=normal),
                         bvp_rhs,
                         tol=1e-9,
                         progress=True,
                         stall_iterations=0,
                         hard_failure=True)
    mu = gmres_result.solution

    arclength_parametrization_derivatives_sym = sym.make_sym_vector(
        "arclength_parametrization_derivatives", dim)
    density_mu_sym = sym.make_sym_vector("mu", dim)
    dxids_sym = arclength_parametrization_derivatives_sym[0] + \
            1j * arclength_parametrization_derivatives_sym[1]
    dxids_conj_sym = arclength_parametrization_derivatives_sym[0] - \
            1j * arclength_parametrization_derivatives_sym[1]
    density_rho_sym = density_mu_sym[1] - 1j * density_mu_sym[0]
    density_conj_rho_sym = density_mu_sym[1] + 1j * density_mu_sym[0]

    # convolutions
    GS1 = sym.IntG(  # noqa: N806
        ComplexLinearLogKernel(dim),
        density_rho_sym,
        qbx_forced_limit=None)
    GS2 = sym.IntG(  # noqa: N806
        ComplexLinearKernel(dim),
        density_conj_rho_sym,
        qbx_forced_limit=None)
    GD1 = sym.IntG(  # noqa: N806
        ComplexFractionalKernel(dim),
        density_rho_sym * dxids_sym,
        qbx_forced_limit=None)
    GD2 = [
        sym.IntG(  # noqa: N806
            AxisTargetDerivative(iaxis, ComplexLogKernel(dim)),
            density_conj_rho_sym * dxids_sym +
            density_rho_sym * dxids_conj_sym,
            qbx_forced_limit=qbx_forced_limit) for iaxis in range(dim)
    ]

    GS1_bdry = sym.IntG(  # noqa: N806
        ComplexLinearLogKernel(dim),
        density_rho_sym,
        qbx_forced_limit=qbx_forced_limit)
    GS2_bdry = sym.IntG(  # noqa: N806
        ComplexLinearKernel(dim),
        density_conj_rho_sym,
        qbx_forced_limit=qbx_forced_limit)
    GD1_bdry = sym.IntG(  # noqa: N806
        ComplexFractionalKernel(dim),
        density_rho_sym * dxids_sym,
        qbx_forced_limit=qbx_forced_limit)

    xp, yp = get_arclength_parametrization_derivative(queue, density_discr)
    xp = -xp
    yp = -yp
    tangent = get_tangent_vectors(queue,
                                  density_discr,
                                  loc_sign=qbx_forced_limit)

    # check and fix the direction of parametrization
    # logger.info("Fix all negative signs in:" +
    #        str(xp * tangent[0] + yp * tangent[1]))

    grad_v2 = [
        bind(qbx,
             GD2[iaxis])(queue,
                         mu=mu,
                         arclength_parametrization_derivatives=make_obj_array(
                             [xp, yp])).real for iaxis in range(dim)
    ]
    v2_tangent_der = sum(tangent[iaxis] * grad_v2[iaxis]
                         for iaxis in range(dim))

    from pytential.symbolic.pde.scalar import NeumannOperator
    from sumpy.kernel import LaplaceKernel
    operator_v1 = NeumannOperator(LaplaceKernel(dim),
                                  loc_sign=qbx_forced_limit)
    bound_op_v1 = bind(qbx, operator_v1.operator(var("sigma")))
    # FIXME: the positive sign works here
    rhs_v1 = operator_v1.prepare_rhs(1 * v2_tangent_der)
    gmres_result = gmres(bound_op_v1.scipy_op(queue, "sigma",
                                              dtype=np.float64),
                         rhs_v1,
                         tol=1e-9,
                         progress=True,
                         stall_iterations=0,
                         hard_failure=True)
    sigma = gmres_result.solution
    qbx_stick_out = qbx.copy(
        target_association_tolerance=target_association_tolerance)
    v1 = bind((qbx_stick_out, target_discr),
              operator_v1.representation(var("sigma"),
                                         qbx_forced_limit=None))(queue,
                                                                 sigma=sigma)
    grad_v1 = bind(
        (qbx_stick_out, target_discr),
        operator_v1.representation(
            var("sigma"),
            qbx_forced_limit=None,
            map_potentials=lambda pot: sym.grad(dim, pot)))(queue, sigma=sigma)
    v1_bdry = bind(
        qbx,
        operator_v1.representation(var("sigma"),
                                   qbx_forced_limit=qbx_forced_limit))(
                                       queue, sigma=sigma)

    z_conj = target_discr.nodes()[0] - 1j * target_discr.nodes()[1]
    z_conj_bdry = density_discr.nodes().with_queue(queue)[0] \
            - 1j * density_discr.nodes().with_queue(queue)[1]
    int_rho = 1 / (8 * np.pi) * bind(
        qbx, sym.integral(dim, dim - 1, density_rho_sym))(queue, mu=mu)

    omega_S1 = bind(  # noqa: N806
        (qbx_stick_out, target_discr), GS1)(queue, mu=mu).real
    omega_S2 = -1 * bind(  # noqa: N806
        (qbx_stick_out, target_discr), GS2)(queue, mu=mu).real
    omega_S3 = (z_conj * int_rho).real  # noqa: N806
    omega_S = -(omega_S1 + omega_S2 + omega_S3)  # noqa: N806

    grad_omega_S1 = bind(  # noqa: N806
        (qbx_stick_out, target_discr), sym.grad(dim, GS1))(queue, mu=mu).real
    grad_omega_S2 = -1 * bind(  # noqa: N806
        (qbx_stick_out, target_discr), sym.grad(dim, GS2))(queue, mu=mu).real
    grad_omega_S3 = (int_rho * make_obj_array([1., -1.])).real  # noqa: N806
    grad_omega_S = -(grad_omega_S1 + grad_omega_S2 + grad_omega_S3
                     )  # noqa: N806

    omega_S1_bdry = bind(qbx, GS1_bdry)(queue, mu=mu).real  # noqa: N806
    omega_S2_bdry = -1 * bind(qbx, GS2_bdry)(queue, mu=mu).real  # noqa: N806
    omega_S3_bdry = (z_conj_bdry * int_rho).real  # noqa: N806
    omega_S_bdry = -(omega_S1_bdry + omega_S2_bdry + omega_S3_bdry
                     )  # noqa: N806

    omega_D1 = bind(  # noqa: N806
        (qbx_stick_out, target_discr),
        GD1)(queue,
             mu=mu,
             arclength_parametrization_derivatives=make_obj_array([xp,
                                                                   yp])).real
    omega_D = (omega_D1 + v1)  # noqa: N806

    grad_omega_D1 = bind(  # noqa: N806
        (qbx_stick_out, target_discr), sym.grad(dim, GD1))(
            queue,
            mu=mu,
            arclength_parametrization_derivatives=make_obj_array([xp,
                                                                  yp])).real
    grad_omega_D = grad_omega_D1 + grad_v1  # noqa: N806

    omega_D1_bdry = bind(  # noqa: N806
        qbx, GD1_bdry)(queue,
                       mu=mu,
                       arclength_parametrization_derivatives=make_obj_array(
                           [xp, yp])).real
    omega_D_bdry = (omega_D1_bdry + v1_bdry)  # noqa: N806

    int_bdry_mu = bind(
        qbx, sym.integral(dim, dim - 1, sym.make_sym_vector("mu", dim)))(queue,
                                                                         mu=mu)
    omega_W = (  # noqa: N806
        int_bdry_mu[0] * target_discr.nodes()[1] -
        int_bdry_mu[1] * target_discr.nodes()[0])
    grad_omega_W = make_obj_array(  # noqa: N806
        [-int_bdry_mu[1], int_bdry_mu[0]])
    omega_W_bdry = (  # noqa: N806
        int_bdry_mu[0] * density_discr.nodes().with_queue(queue)[1] -
        int_bdry_mu[1] * density_discr.nodes().with_queue(queue)[0])

    int_bdry = bind(qbx, sym.integral(dim, dim - 1, var("integrand")))(
        queue, integrand=omega_S_bdry + omega_D_bdry + omega_W_bdry)

    debugging_info = {}
    debugging_info['omega_S'] = omega_S
    debugging_info['omega_D'] = omega_D
    debugging_info['omega_W'] = omega_W
    debugging_info['omega_v1'] = v1
    debugging_info['omega_D1'] = omega_D1

    int_interior_func_bdry = bind(qbx,
                                  sym.integral(2, 1,
                                               var("integrand")))(queue,
                                                                  integrand=f)

    path_length = get_path_length(queue, density_discr)
    ext_f = omega_S + omega_D + omega_W + (int_interior_func_bdry -
                                           int_bdry) / path_length
    grad_f = grad_omega_S + grad_omega_D + grad_omega_W

    return ext_f, grad_f[0], grad_f[1], debugging_info