Exemplo n.º 1
0
    def export_to_caffe2(self,
                         model,
                         export_path: str,
                         export_onnx_path: str = None) -> List[str]:
        """
        export pytorch model to caffe2 by first using ONNX to convert logic in forward
        function to a caffe2 net, and then prepend/append additional operators to
        the caffe2 net according to the model

        Args:
            model (Model): pytorch model to export
            export_path (str): path to save the exported caffe2 model
            export_onnx_path (str): path to save the exported onnx model

        Returns:
            final_output_names: list of caffe2 model output names
        """

        print(f"Saving caffe2 model to: {export_path}")

        # caffe2/onnx doesn't support internal uri(i.e. manifold)
        # workaround: save to a temp file and copy to model_path
        # this will be deprecated soon after caffe2 fully deprecated
        _, temp_path = tempfile.mkstemp(prefix="pytext")

        c2_prepared = onnx.pytorch_to_caffe2(
            model,
            self.dummy_model_input,
            self.input_names,
            self.output_names,
            temp_path,
            export_onnx_path,
        )
        c2_prepared, final_input_names = self.prepend_operators(
            c2_prepared, self.input_names)

        # Required because of https://github.com/pytorch/pytorch/pull/6456/files
        with c2_prepared.workspace._ctx:
            predict_net = core.Net(c2_prepared.predict_net)
            init_net = core.Net(c2_prepared.init_net)

            net_outputs, final_out_names = self.postprocess_output(
                init_net, predict_net, c2_prepared.workspace,
                self.output_names, model)
            for output in net_outputs:
                predict_net.AddExternalOutput(output)
            c2_prepared.predict_net = predict_net.Proto()
            c2_prepared.init_net = init_net.Proto()

        # Save predictor net to file
        onnx.export_nets_to_predictor_file(
            c2_prepared,
            final_input_names,
            final_out_names,
            temp_path,
            self.get_extra_params(),
        )
        PathManager.copy_from_local(temp_path, export_path, overwrite=True)
        return final_out_names
Exemplo n.º 2
0
    def export_to_caffe2(self,
                         model,
                         export_path: str,
                         export_onnx_path: str = None) -> List[str]:
        """
        export pytorch model to caffe2 by first using ONNX to convert logic in forward
        function to a caffe2 net, and then prepend/append additional operators to
        the caffe2 net according to the model

        Args:
            model (Model): pytorch model to export
            export_path (str): path to save the exported caffe2 model
            export_onnx_path (str): path to save the exported onnx model

        Returns:
            final_output_names: list of caffe2 model output names
        """

        print(f"Saving caffe2 model to: {export_path}")

        c2_prepared = onnx.pytorch_to_caffe2(
            model,
            self.dummy_model_input,
            self.input_names,
            self.output_names,
            export_path,
            export_onnx_path,
        )
        c2_prepared, final_input_names = self.prepend_operators(
            c2_prepared, self.input_names)

        # Required because of https://github.com/pytorch/pytorch/pull/6456/files
        with c2_prepared.workspace._ctx:
            predict_net = core.Net(c2_prepared.predict_net)
            init_net = core.Net(c2_prepared.init_net)

            net_outputs, final_out_names = self.postprocess_output(
                init_net, predict_net, c2_prepared.workspace,
                self.output_names, model)
            for output in net_outputs:
                predict_net.AddExternalOutput(output)
            c2_prepared.predict_net = predict_net.Proto()
            c2_prepared.init_net = init_net.Proto()

        # Save predictor net to file
        onnx.export_nets_to_predictor_file(
            c2_prepared,
            final_input_names,
            final_out_names,
            export_path,
            self.get_extra_params(),
        )
        return final_out_names