Exemplo n.º 1
0
    def test_psd(self):
        """Test a case that integrates over a particle size distribution
        """
        tm = Scatterer(wavelength=6.5,
                       m=complex(1.5, 0.5),
                       axis_ratio=1.0 / 0.6)
        tm.psd_integrator = psd.PSDIntegrator()
        tm.psd_integrator.num_points = 500
        tm.psd = psd.GammaPSD(D0=1.0, Nw=1e3, mu=4)
        tm.psd_integrator.D_max = 10.0
        tm.psd_integrator.init_scatter_table(tm)
        (S, Z) = tm.get_SZ()

        S_ref = np.array([[
            complex(1.02521928e+00, 6.76066598e-01),
            complex(6.71933838e-24, 6.83819665e-24)
        ],
                          [
                              complex(-6.71933678e-24, -6.83813546e-24),
                              complex(-1.10464413e+00, -1.05571494e+00)
                          ]])

        Z_ref = np.array([
            [7.20540295e-02, -1.54020475e-02, -9.96222107e-25, 8.34246458e-26],
            [-1.54020475e-02, 7.20540295e-02, 1.23279391e-25, 1.40049088e-25],
            [9.96224596e-25, -1.23291269e-25, -6.89739108e-02, 1.38873290e-02],
            [8.34137617e-26, 1.40048866e-25, -1.38873290e-02, -6.89739108e-02]
        ])

        test_relative(self, S, S_ref)
        test_relative(self, Z, Z_ref)
Exemplo n.º 2
0
 def tmatrix(self, wl, pluvio_filter=True, pip_filter=False, density=None):
     """Calculate radar reflectivity at requested wavelength wl [mm] using
     T-matrix"""
     name = switch_wl(wl) + "reflTM"
     if density is None:
         density = self.density(pluvio_filter=pluvio_filter,
                                pip_filter=pip_filter)
     z_serie = pd.Series(density)
     dBin = self.instr['dsd'].bin_width()
     edges = self.instr['dsd'].bin_cen() + 0.5 * dBin
     grp = self.instr['dsd'].grouped(rule=self.rule,
                                     varinterval=self.varinterval,
                                     col=self.dsd.bin_cen())
     psd_values = grp.mean()
     for item in density.iteritems():
         if item[1] > 0.0:
             ref = refractive.mi(wl, 0.001 * item[1])
             print(ref)
             flake = tmatrix.Scatterer(wavelength=wl,
                                       m=ref,
                                       axis_ratio=1.0 / 1.0)
             flake.psd_integrator = psd.PSDIntegrator()
             flake.psd_integrator.D_max = 35.0
             flake.psd = psd.BinnedPSD(
                 bin_edges=edges, bin_psd=psd_values.loc[item[0]].values)
             flake.psd_integrator.init_scatter_table(flake)
             Z = 10.0 * np.log10(radar.refl(flake))
         else:
             Z = np.nan
         z_serie.loc[item[0]] = Z
     z_serie.name = name
     return z_serie
Exemplo n.º 3
0
def setup_scatterer_rain(elev_radar):
    
    scatterer        = Scatterer()
    scatterer.psd_integrator   = psd.PSDIntegrator() 
    scatterer.psd_integrator.axis_ratio_func = lambda D: 1.0/drop_ar(D)   
    scatterer.alpha  = 0.0 
    scatterer.beta   = 0.0 
    scatterer.phi0   = 0.0 
    scatterer.thet   = 90.0 - elev_radar[0]
    scatterer.thet0  = 90.0 - elev_radar[0]
    scatterer.phi    = 0.0 
    geom_forw        = scatterer.get_geometry() 
    scatterer.phi    = 180.0 
    geom_back        = scatterer.get_geometry()     
    scatterer.or_pdf = orientation.gaussian_pdf(7.0)      # orientation PDF according to Bringi and Chandrasekar (2001)
    scatterer.orient = orientation.orient_averaged_fixed  # averaging method    

    return [scatterer, geom_forw, geom_back]   
Exemplo n.º 4
0
def setup_scatterer_grau(elev_radar):
    scatterer                  = Scatterer()
    scatterer.psd_integrator   = psd.PSDIntegrator()    
    scatterer.axis_ratio       = 1.       # 1./0.8 (original); 
    scatterer.alpha  = 0.0 
    scatterer.beta   = 0.0 
    scatterer.phi0   = 0.0 
    scatterer.thet   = 90.0 - elev_radar[0]
    scatterer.thet0  = 90.0 - elev_radar[0]
    scatterer.phi    = 0.0 
    geom_forw        = scatterer.get_geometry() 
    scatterer.phi    = 180.0 
    geom_back        = scatterer.get_geometry()    
    
    # set up orientation averaging, Gaussian PDF with mean=0 and std=7 deg
    scatterer.or_pdf = orientation.gaussian_pdf(1)      # orientation PDF according to Bringi and Chandrasekar (2001)
    scatterer.orient = orientation.orient_averaged_fixed  # averaging method

    return [scatterer, geom_forw, geom_back]   
Exemplo n.º 5
0
def tmatrix_stuffses(dsd):
    drops = tmatrix.Scatterer(wavelength=aux.wl_C, m=ref.m_w_10C[aux.wl_C])
    drops.Kw_sqr = aux.K_w_sqr[aux.wl_C]
    drops.or_pdf = ori.gaussian_pdf(std=7.0)
    drops.orient = ori.orient_averaged_fixed
    drops.psd_integrator = psd.PSDIntegrator()
    drops.psd_integrator.D_max = 10.0
    drops.psd_integrator.axis_ratio_func = read.ar

    back = aux.geom_horiz_back
    forw = aux.geom_horiz_forw
    drops.psd_integrator.geometries = (back, forw)

    drops.psd_integrator.init_scatter_table(drops)

    psds = dsd.to_tm_series(resample=None)

    drops.set_geometry(back)

    zh = []
    zv = []
    zdr = []
    rho_hv = []
    ldr = []

    for tm_psd in psds:
        drops.psd = tm_psd
        zh.append(db(radar.refl(drops)))
        zv.append(db(radar.refl(drops, False)))
        zdr.append(db(radar.Zdr(drops)))
        rho_hv.append(radar.rho_hv(drops))
        ldr.append(db(radar.ldr(drops)))

    d = {
        'R': dsd.intensity(),
        'Zh': zh,
        'Zv': zv,
        'Zdr': zdr,
        'rho_hv': rho_hv,
        'LDR': ldr
    }
    return pd.DataFrame(data=d, index=psds.index)
Exemplo n.º 6
0
    def test_integrated_x_sca(self):
        """Test Rayleigh scattering cross section integrated over sizes.
        """

        m = complex(3.0, 0.5)
        K = (m**2 - 1) / (m**2 + 2)
        N0 = 10
        Lambda = 1e4

        sca = Scatterer(wavelength=1, m=m)
        sca.psd_integrator = psd.PSDIntegrator()
        sca.psd = psd.ExponentialPSD(N0=N0, Lambda=Lambda)
        sca.psd.D_max = 0.002
        sca.psd_integrator.D_max = sca.psd.D_max
        # 256 is quite low, but we want to run the test reasonably fast
        sca.psd_integrator.num_points = 256
        sca.psd_integrator.init_scatter_table(sca, angular_integration=True)

        # This size-integrated scattering cross section has an analytical value.
        # Check that we can reproduce it.
        sca_xsect_ref = 480 * N0 * np.pi**5 * abs(K)**2 / Lambda**7
        sca_xsect = scatter.sca_xsect(sca)
        test_less(self, abs(1 - sca_xsect / sca_xsect_ref), 1e-3)
Exemplo n.º 7
0
geom_back = scatterer.get_geometry()
scatterer.phi = 0.0
geom_forw = scatterer.get_geometry()

# so assuming perfect backscattering (no gaussian function)
# geom_tuple = (theta_radar, theta_radar, 0.0, 180.0, 0.0, 0.0)
# Set geometry to backscattering!
# CAREFUL: for Kdp need forward scattering. <-------------------------------------------------
scatterer.set_geometry(geom_back)

# set up orientation averaging, Gaussian PDF with mean=0 and std=7 deg
scatterer.or_pdf = orientation.gaussian_pdf(7.0)  # orientation PDF
scatterer.orient = orientation.orient_averaged_fixed  # averaging method

# set up PSD integration
scatterer.psd_integrator = psd.PSDIntegrator()
scatterer.psd_integrator.D_max = 5.  # maximum diameter considered
scatterer.psd_integrator.geometries = (geom_forw, geom_back)
#scatterer.psd_integrator.geometries     = (tmatrix_aux.geom_horiz_back, tmatrix_aux.geom_horiz_forw)    # ?????????
scatterer.psd_integrator.axis_ratio_func = lambda D: 1.0 / drop_ar(
    2. * D)  # This only for rain maybe (?)

scatterer.wavelength = wavelengths[1]
scatterer.m = ref_indices_rain[1]

# initialize lookup table
scatterer.psd_integrator.init_scatter_table(scatterer)

Zh_RAIN = np.zeros([dim, dim])
Zdr_RAIN = np.zeros([dim, dim])
Ai = 0.0 * D0s

wl = tmatrix_aux.wl_W
el = 0.

scatterer = tmatrix.Scatterer(
    wavelength=wl,
    m=refractive.m_w_10C[wl],
    #kw_sqr=tmatrix_aux.K_w_sqr[wl],
    radius_type=tmatrix.Scatterer.RADIUS_MAXIMUM,
    #or_pdf=orientation.gaussian_pdf(std=1.0),
    #orient=orientation.orient_averaged_fixed,
    thet0=90.0 - el,
    thet=90.0 + el)
Nw = 8000.0  # mm-2 m-3
mu = 5
scatterer.psd_integrator = psd.PSDIntegrator(
    D_max=8.0,
    geometries=(tmatrix_aux.geom_horiz_back, tmatrix_aux.geom_horiz_forw))
scatterer.psd_integrator.init_scatter_table(scatterer)
for i, D0 in enumerate(D0s):
    scatterer.psd = genGamma(Nw, D0, mu)  #psd.GammaPSD(D0=D0, mu=mu, Nw=Nw)
    scatterer.set_geometry(tmatrix_aux.geom_horiz_back)
    Zhh[i] = 10.0 * np.log10(radar.refl(scatterer))
    scatterer.set_geometry(tmatrix_aux.geom_horiz_forw)
    Ai[i] = radar.Ai(scatterer)

plt.plot(D0s, Zhh)
plt.plot(D0s, Zhh - 2.0 * Ai * 0.25)
plt.ylim([11, 26])
plt.grid()