Exemplo n.º 1
0
    def test_concat(self):
        dmd1 = self.get_data(is_classification=False)
        dmd2 = self.get_data(is_classification=True)

        self.assertEqual(dmd1.n_samples, dmd2.n_samples)

        dmd = DMD.concat([dmd1, dmd2], axis=0)

        self.assertEqual(dmd.n_samples, 2 * dmd2.n_samples)
        self.assertEqual(dmd._x.shape[0], 2 * dmd1._y.shape[0])
        self.assertEqual(dmd._x.shape[0], 2 * dmd1._samples_meta.shape[0])

        self.assertEqual(dmd.n_features, dmd2.n_features)
Exemplo n.º 2
0
    def prepare_dataset_for_score_quality(cls, dmd_train: DMD, dmd_test: DMD):
        '''

        :param dmd_train: train set
        :param dmd_test: test set
        :return: dataset with target of test/train
        '''

        dmd = DMD.concat([dmd_train, dmd_test])
        new_label = [0] * dmd_train.n_samples + [1] * dmd_test.n_samples
        dmd.set_target(new_label)

        train, test = dmd.split(ratio=dmd_test.n_samples / (dmd_train.n_samples + dmd_test.n_samples))
        return train, test