Exemplo n.º 1
0
    def getTransformedVolume(self):
        from pytom.tompy.io import read
        from pytom.tompy.transform import translate3d, rotate3d

        v = read(self.filename)
        v2 = translate3d(v, -self.shift_x, -self.shift_y, -self.shift_z)
        v3 = rotate3d(v2, -self.rotation_psi, -self.rotation_phi,
                      -self.rotation_the)

        return v3
Exemplo n.º 2
0
def test(index=0):
    from pytom.tompy.io import read
    from pytom.tompy.transform import rotate3d

    path_raw_projection = "/data2/dschulte/BachelorThesis/Data/VPP2/03_Tomographic_Reconstruction/tomogram_000/sorted/sorted_29.em"
    path_aligned_projection = "/data2/dschulte/BachelorThesis/Data/VPP2/03_Tomographic_Reconstruction/tomogram_000/alignment/marker_0001_-60.0,60.0/sorted_aligned_30.em"
    path_template = "/data2/dschulte/BachelorThesis/Data/VPP2/05_Subtomogram_Analysis/combo_reduced.em"
    tilt_angle = -1.9989999533
    raw_projection = read(path_raw_projection)
    aligned_projection = read(path_aligned_projection)
    template = read(path_template)
    dim = aligned_projection.shape[0]

    from pytom.basic.structures import ParticleList

    particlelist1 = ParticleList()
    particlelist1.fromXMLFile(
        "/data2/dschulte/BachelorThesis/Data/VPP2/04_Particle_Picking/Picked_Particles/combined_reduced_extracted/particleList_combined_reduced_tomogram_010_WBP.xml"
    )

    align_results = (-15.3044300079, 3.7495634556, -184.3835906982,
                     1.0000053644)  # -2
    #align_results = (-1.2395387888, 4.9647006989, -184.3754882812, 1.0000000000) # 0
    #pick_position = (278.12318382089245 * 8, 222.6395540890773 * 8, 268.97256780848085 * 8) #0
    #pick_position = (381.21906883806 * 8, 153.61353397521387 * 8, 246.8315433927568 * 8) #74
    #particle_rotation = (26.442828473505173, 44.44149544840194, 58.160958298848676) #0
    #particle_rotation = (85.2456894956599, 30.815061362336394, 9.543300915975514) #74

    pick_position = particlelist1[index].getPickPosition().toVector()
    particle_rotation = (particlelist1[index].getRotation().getZ1(),
                         particlelist1[index].getRotation().getX(),
                         particlelist1[index].getRotation().getZ2())

    print(pick_position, particle_rotation)

    align_transformation, raw_position, aligned_position, template_transformation = combine_trans_projection(
        align_results, pick_position, particle_rotation, tilt_angle, dim, 8,
        template.shape[0])

    d = 100
    raw_patch = raw_projection[int(raw_position[0] - d):int(raw_position[0] +
                                                            d),
                               int(raw_position[1] - d):int(raw_position[1] +
                                                            d)].squeeze()
    raw_patch = raw_patch / np.mean(raw_patch)

    aligned_patch = aligned_projection[int(aligned_position[0] -
                                           d):int(aligned_position[0] + d),
                                       int(aligned_position[1] -
                                           d):int(aligned_position[1] +
                                                  d)].squeeze()
    aligned_patch = aligned_patch / (np.mean(aligned_patch))

    aligned_raw = matrix_apply_to_2d(aligned_projection.squeeze(),
                                     align_transformation)
    aligned_raw_patch = aligned_raw[int(raw_position[0] -
                                        d):int(raw_position[0] + d),
                                    int(raw_position[1] -
                                        d):int(raw_position[1] + d)].squeeze()
    aligned_raw_patch = aligned_raw_patch / (np.mean(aligned_raw_patch))

    transformed_template = matrix_apply_to_3d_3x3(template,
                                                  template_transformation)
    print(np.mean(transformed_template), np.mean(template))
    template_2d = transformed_template.sum(axis=2)
    template_2d = template_2d / np.mean(template_2d)
    print(template_2d.shape)

    template_vol = rotate3d(template,
                            phi=particle_rotation[0],
                            the=particle_rotation[1],
                            psi=particle_rotation[2])
    template_vol = rotate3d(template_vol, the=tilt_angle)
    template_vol_2d = template_vol.sum(axis=2)

    from pytom.reconstruction.reconstruct_local_alignment import normalised_cross_correlation_numpy, find_sub_pixel_max_value_2d

    raw_cc = normalised_cross_correlation_numpy(raw_patch, template_2d)
    rx, ry, _ = find_sub_pixel_max_value_2d(raw_cc)

    aligned_cc = normalised_cross_correlation_numpy(aligned_patch,
                                                    template_vol_2d)
    tx, ty, _ = find_sub_pixel_max_value_2d(aligned_cc)

    import pylab as pl
    import scipy

    f, ax = pl.subplots(2, 3, figsize=(15, 10))

    for i in range(2):
        for j in range(3):
            ax[i][j].axis('off')

    ax[0][0].set_title('Raw Data Particle')
    ax[0][0].imshow(scipy.ndimage.gaussian_filter(raw_patch, 3))
    ax[0][1].set_title('Template Transformed to Raw Data')
    ax[0][1].imshow(template_2d)
    ax[0][2].set_title('Cross Correlation')
    ax[0][2].imshow(raw_cc)
    ax[0][2].text(0.05,
                  0.05,
                  'Peak\nx: {0:.2f}\ny: {0:.2f}'.format(rx, ry),
                  transform=ax[0][2].transAxes,
                  color='white')
    ax[1][0].set_title('Aligned Data Particle')
    ax[1][0].imshow(scipy.ndimage.gaussian_filter(aligned_patch, 3))
    ax[1][1].set_title('Template Aligned to Aligned Data')
    ax[1][1].imshow(template_vol_2d)
    ax[1][2].set_title('Cross Correlation')
    ax[1][2].imshow(aligned_cc)
    ax[1][2].text(0.05,
                  0.05,
                  'Peak\nx: {0:.2f}\ny: {0:.2f}'.format(tx, ty),
                  transform=ax[1][2].transAxes,
                  color='white')
    f.tight_layout()
    pl.show()
Exemplo n.º 3
0
def run_single_tilt_angle(ang, subtomogram, offset, vol_size,
                          particle_position, particle_rotation,
                          particle_filename, particle_number, binning, img,
                          create_graphics, fsc_path, dimz, peak_border):
    """
    To run a single tilt angle to allow for parallel computing

    @param ang: the tilt angle
    @type ang: int
    @param subtomogram: the filename of the subtomogram
    @type subtomogram: str
    @param offset: the offset used (x,y,z)
    @type offset: list(int, int, int)
    @param vol_size: the size of the volume to be reconstructed (in pixels)
    @type vol_size: int
    @param particle_position: the position of the particle in vector format,
               as given by particle.pickPosition().toVector()
    @type particle_position: tuple
    @param particle_rotation: the rotation of the particle (Z1/phi, X/the, Z2/psi)
    @type particle_rotation: tuple
    @param particle_filename: the filename of the particle, as given by particle.getfilename()
    @type particle_filename: str
    @param particle_number: the number of the particle, to allow for unique mapping
    @type particle_number: int
    @param binning: the binning factor used
    @type binning: int
    @param img: the filename of the projection to be used
    @type img: str
    @param create_graphics: to flag if images should be created for human inspection of the work done
    @type create_graphics: bool
    @return: the newly found positions of the particle, as a list  in the LOCAL_ALIGNMENT_RESULTS format
    @returntype: list
    """

    print(ang, offset, binning, particle_position)
    from pytom.tompy.transform import rotate3d
    import numpy as np
    from math import cos, sin, pi
    from pytom.tompy.transform import cut_from_projection
    from pytom.tompy.io import read

    subtomogram = read(subtomogram)
    img = read(img)

    # Get the size of the original projection
    dim_x = img.shape[0]
    dim_z = dim_x if dimz is None else dimz
    print(dim_x, dim_z)

    x, y, z = particle_position
    x = (x + offset[0]) * binning
    y = (y + offset[1]) * binning
    z = (z + offset[2]) * binning

    # Get template
    # First rotate towards orientation of the particle, then to the tilt angle
    rotated1 = rotate3d(subtomogram,
                        phi=particle_rotation[0],
                        the=particle_rotation[1],
                        psi=particle_rotation[2])
    rotated2 = rotate3d(rotated1, the=ang)  # 'the' is the rotational axis
    template = rotated2.sum(axis=2)

    # Get coordinates of the paricle adjusted for the tilt angle
    yy = y  # assume the rotation axis is around y
    xx = (cos(ang * pi / 180) * (x - dim_x / 2) - sin(ang * pi / 180) *
          (z - dim_z / 2)) + dim_x / 2

    # Cut the small patch out
    patch = cut_from_projection(img.sum(axis=2), [xx, yy],
                                [vol_size, vol_size])
    patch = patch - patch.mean()

    # Filter using FSC
    fsc_mask = None
    import os
    if os.path.isfile(fsc_path):
        f = open(fsc_path, "r")
        fsc = map(lambda a: float(a), f.readlines())
        f.close()
        fsc_mask = create_fsc_mask(fsc, vol_size)
    elif fsc_path != "":
        print("Not an existing FSC file: " + fsc_path)

    # Cross correlate the template and patch, this should give the pixel shift it is after
    ccf = normalised_cross_correlation(template, patch, fsc_mask)
    points2d = find_sub_pixel_max_value_2d(ccf, ignore_border=peak_border)

    x_diff = points2d[0] - vol_size / 2
    y_diff = points2d[1] - vol_size / 2

    if create_graphics:
        # Create an image to display and/or test the inner workings of the algorithm
        m_style = dict(color='tab:blue',
                       linestyle=':',
                       marker='o',
                       markersize=5,
                       markerfacecoloralt='tab:red')
        m_style_alt = dict(color='tab:red',
                           linestyle=':',
                           marker='o',
                           markersize=5,
                           markerfacecoloralt='tab:blue')

        points = find_sub_pixel_max_value(ccf)

        nx, ny, nz = particle_position
        nx += x_diff
        ny += y_diff

        npatch = cut_from_projection(
            img.sum(axis=2), [xx + x_diff, yy + y_diff], [vol_size, vol_size]
        )  # img.sum(axis=2)[int(xx+x_diff-v):int(xx+x_diff+v), int(yy+y_diff-v):int(yy+y_diff+v)]  #
        npatch = npatch - np.mean(npatch)

        nccf = normalised_cross_correlation(template, npatch.squeeze())
        npoints = find_sub_pixel_max_value(nccf)
        npoints2d = find_sub_pixel_max_value_2d(nccf,
                                                ignore_border=peak_border)

        import pylab as pp

        grid = pp.GridSpec(3,
                           3,
                           wspace=0,
                           hspace=0.35,
                           left=0.05,
                           right=0.95,
                           top=0.90,
                           bottom=0.05)

        ax_0_0 = pp.subplot(grid[0, 0])
        ax_0_1 = pp.subplot(grid[0, 1])
        ax_0_2 = pp.subplot(grid[0, 2])
        ax_1_0 = pp.subplot(grid[1, 0])
        ax_1_1 = pp.subplot(grid[1, 1])
        ax_1_2 = pp.subplot(grid[1, 2])
        ax_2_0 = pp.subplot(grid[2, 0])
        ax_2_1 = pp.subplot(grid[2, 1])
        ax_2_2 = pp.subplot(grid[2, 2])

        ax_0_0.axis('off')
        ax_0_1.axis('off')
        ax_0_2.axis('off')
        ax_1_0.axis('off')
        ax_1_1.axis('off')
        ax_1_2.axis('off')
        ax_2_0.axis('off')
        ax_2_1.axis('off')
        ax_2_2.axis('off')

        axis_title(ax_0_0, "Cutout")
        ax_0_0.imshow(patch)
        axis_title(ax_0_1, "Template")
        ax_0_1.imshow(template)
        axis_title(ax_0_2, "Shifted Cutout\n(based on cross correlation)")
        ax_0_2.imshow(npatch.squeeze())

        axis_title(ax_1_0, u"Cross correlation\ncutout × template")
        ax_1_0.imshow(ccf)
        ax_1_0.plot([p[1] for p in points], [p[0] for p in points],
                    fillstyle='none',
                    **m_style)
        ax_1_0.plot([points2d[1]], [points2d[0]],
                    fillstyle='none',
                    **m_style_alt)
        ax_1_0.plot([vol_size / 2], [vol_size / 2], ",k")

        ax_1_1.text(
            0.5,
            0.8,
            "Red: 2D spline interpolation\nx: {:f}\ny: {:f}\nBlue: 1D spline interpolation\nx: {:f}\ny: {:f}"
            "\nBlack: center".format(x_diff, y_diff,
                                     points[0][0] - vol_size / 2,
                                     points[0][1] - vol_size / 2),
            fontsize=8,
            horizontalalignment='center',
            verticalalignment='center',
            transform=ax_1_1.transAxes)

        axis_title(ax_1_2, u"Cross correlation\nshifted cutout × template")
        ax_1_2.imshow(nccf)
        ax_1_2.plot([p[0] for p in npoints], [p[1] for p in npoints],
                    fillstyle='none',
                    **m_style)
        ax_1_2.plot([npoints2d[0]], [npoints2d[1]],
                    fillstyle='none',
                    **m_style_alt)
        ax_1_2.plot([vol_size / 2], [vol_size / 2], ",k")

        axis_title(ax_2_0, u"Zoom into red peak\nin CC cutout × template")
        d = 10
        peak = ccf[int(points2d[0]) - d:int(points2d[0]) + d,
                   int(points2d[1]) - d:int(points2d[1] + d)]
        ax_2_0.imshow(peak)

        axis_title(
            ax_2_1,
            u"Zoom into red peak\nin CC cutout × template\ninterpolated")
        ax_2_1.imshow(points2d[2])

        axis_title(ax_2_2, u"Cutout\nGaussian filter σ3")
        import scipy
        ax_2_2.imshow(scipy.ndimage.gaussian_filter(patch, 3))

        pp.savefig("polish_particle_{:04d}_tiltimage_{:05.2f}.png".format(
            particle_number, ang))

    return particle_number, x_diff, y_diff, ang, 0, 0, particle_filename
Exemplo n.º 4
0
def run_single_tilt_angle(subtomogram, ang, offset, vol_size,
                          particle_position, particle_rotation,
                          particle_filename, particle_number, binning, img,
                          create_graphics, fsc_path, dimz, peak_border):
    """
    To run a single tilt angle to allow for parallel computing

    @param ang: the tilt angle
    @type ang: int
    @param subtomogram: the filename of the subtomogram
    @type subtomogram: str
    @param offset: the offset used (x,y,z)
    @type offset: list(int, int, int)
    @param vol_size: the size of the volume to be reconstructed (in pixels)
    @type vol_size: int
    @param particle_position: the position of the particle in vector format,
               as given by particle.pickPosition().toVector()
    @type particle_position: tuple
    @param particle_rotation: the rotation of the particle (Z1/phi, X/the, Z2/psi)
    @type particle_rotation: tuple
    @param particle_filename: the filename of the particle, as given by particle.getfilename()
    @type particle_filename: str
    @param particle_number: the number of the particle, to allow for unique mapping
    @type particle_number: int
    @param binning: the binning factor used
    @type binning: int
    @param img: the filename of the projection to be used
    @type img: str
    @param create_graphics: to flag if images should be created for human inspection of the work done
    @type create_graphics: bool
    @return: the newly found positions of the particle, as a list  in the LOCAL_ALIGNMENT_RESULTS format
    @returntype: list
    """

    from pytom.reconstruction.reconstructionFunctions import alignImageUsingAlignmentResultFile
    from pytom.tompy.transform import rotate3d, rotate_axis
    from pytom.gui.guiFunctions import datatypeAR, loadstar
    import numpy as np
    from math import cos, sin, pi, sqrt
    from pytom.tompy.tools import create_circle
    from pytom.tompy.transform import cut_from_projection
    from pytom.tompy.filter import applyFourierFilterFull, bandpass_circle
    from pytom.tompy.io import read, write
    from pytom.tompy.correlation import meanUnderMask, stdUnderMask
    import os
    import time

    t = time.time()
    # print(particle_filename, ang)

    # Filter using FSC
    fsc_mask = None
    k = 0.01
    subtomogram = read(subtomogram) * read(
        '/data/gijsvds/ctem/05_Subtomogram_Analysis/Alignment/GLocal/mask_200_75_5.mrc'
    )

    import os
    from pytom.tompy.filter import filter_volume_by_profile, profile2FourierVol
    fsc_path = ''
    if os.path.isfile(fsc_path):
        profile = [line.split()[0] for line in open(fsc_path, 'r').readlines()]
        fsc_mask3d = profile2FourierVol(profile, subtomogram.shape)

        subtomogram = applyFourierFilterFull(subtomogram, fsc_mask3d)

    # Cross correlate the templat
    # e and patch, this should give the pixel shift it is after
    from pytom.tompy.correlation import nXcf

    # Get template
    # First rotate the template towards orientation of the particle, then to the tilt angle

    img = read(img)

    rotated1 = rotate3d(subtomogram,
                        phi=particle_rotation[0],
                        the=particle_rotation[1],
                        psi=particle_rotation[2])
    rotated2 = rotate_axis(
        rotated1, -ang,
        'y')  # SWITCHED TO ROTATE AXIS AND ANGLE *-1 THIS IS AN ATTEMPT
    template = rotated2.sum(axis=2)

    # write('pp1_template.mrc', template)

    # img = read(img)
    try:
        patch, xx, yy = cut_patch(img,
                                  ang,
                                  particle_position,
                                  dimz=dimz,
                                  vol_size=vol_size,
                                  binning=binning)
        mask2d = create_circle(patch.shape, radius=75, sigma=5, num_sigma=2)
        patch *= mask2d
        # write('pp1_patch.mrc', patch)

        if os.path.isfile(fsc_path):
            profile = [
                line.split()[0] for line in open(fsc_path, 'r').readlines()
            ]
            fsc_mask2d = profile2FourierVol(profile, patch.shape)
            patch = applyFourierFilterFull(patch, fsc_mask2d)

        template = normalize_image(template, mask2d, mask2d.sum())
        patch = normalize_image(patch, mask2d, mask2d.sum())

        if 1:
            ff = xp.ones_like(patch)
        else:
            ff = bandpass_circle(patch.squeeze(), 6, 25, 3)

        ccf = normalised_cross_correlation(template, patch, ff)

        points2d1 = find_sub_pixel_max_value_2d(ccf.copy(),
                                                ignore_border=peak_border)
        points2d2 = find_sub_pixel_max_value(ccf.copy(),
                                             ignore_border=peak_border)
        points2d = list(points2d2[:2]) + [points2d1[-1]]

        x_diff = points2d[0] - vol_size / 2
        y_diff = points2d[1] - vol_size / 2

        dist = sqrt(x_diff**2 + y_diff**2)

        #rx, ry, ii, oox, ooy, x2, y2 = find_sub_pixel_max_value_voltools(ccf.copy())

        #print(rx,ry, x_diff, y_diff, x2, y2, oox, ooy, ii.shape)
        #print(f'{particle_number:3d} {ang:5.1f}, {dist:5.2f} {x_diff} {y_diff} {ccf.max()}')
        if create_graphics:
            rx, ry, ii, oox, ooy, x2, y2 = find_sub_pixel_max_value_voltools(
                ccf.copy(), k=k)
            print(rx, ry)
            from scipy.ndimage.filters import gaussian_filter
            # Create an image to display and/or test the inner workings of the algorithm

            points = find_sub_pixel_max_value(ccf, ignore_border=peak_border)

            nx, ny, nz = particle_position
            nx += x_diff
            ny += y_diff

            npatch = cut_from_projection(
                img.squeeze(), [xx + x_diff, yy + y_diff],
                [vol_size, vol_size]
            )  # img.sum(axis=2)[int(xx+x_diff-v):int(xx+x_diff+v), int(yy+y_diff-v):int(yy+y_diff+v)]  #
            npatch = normalize_image(npatch, mask2d, mask2d.sum())

            nccf = normalised_cross_correlation(template, npatch.squeeze(), ff)
            npoints = find_sub_pixel_max_value(nccf, ignore_border=peak_border)
            npoints2d = find_sub_pixel_max_value_2d(nccf,
                                                    ignore_border=peak_border)
            #rx, ry = abs(xp.array(npoints2d[:2]) - 100)

            from scipy.ndimage.filters import gaussian_filter
            # Create an image to display and/or test the inner workings of the algorithm

            points = find_sub_pixel_max_value(ccf, ignore_border=peak_border)

            nx, ny, nz = particle_position
            nx += x_diff
            ny += y_diff

            npatch = cut_from_projection(
                img.squeeze(), [xx + x_diff, yy + y_diff],
                [vol_size, vol_size]
            )  # img.sum(axis=2)[int(xx+x_diff-v):int(xx+x_diff+v), int(yy+y_diff-v):int(yy+y_diff+v)]  #
            npatch = normalize_image(npatch, mask2d, mask2d.sum())

            nccf = normalised_cross_correlation(template, npatch.squeeze(), ff)
            npoints = find_sub_pixel_max_value(nccf, ignore_border=peak_border)
            npoints2d = find_sub_pixel_max_value_2d(nccf,
                                                    ignore_border=peak_border)
            #rx, ry = abs(xp.array(npoints2d[:2]) - 100)

            m_style = dict(color='tab:blue',
                           linestyle=':',
                           marker='o',
                           markersize=5,
                           markerfacecoloralt='tab:red')
            m_style_alt = dict(color='tab:red',
                               linestyle=':',
                               marker='o',
                               markersize=5,
                               markerfacecoloralt='tab:orange')

            grid = pp.GridSpec(3,
                               3,
                               wspace=0,
                               hspace=0.35,
                               left=0.05,
                               right=0.95,
                               top=0.90,
                               bottom=0.05)

            ax_0_0 = pp.subplot(grid[0, 0])
            ax_0_1 = pp.subplot(grid[0, 1])
            ax_0_2 = pp.subplot(grid[0, 2])
            ax_1_0 = pp.subplot(grid[1, 0])
            ax_1_1 = pp.subplot(grid[1, 1])
            ax_1_2 = pp.subplot(grid[1, 2])
            ax_2_0 = pp.subplot(grid[2, 0])
            ax_2_1 = pp.subplot(grid[2, 1])
            ax_2_2 = pp.subplot(grid[2, 2])

            ax_0_0.axis('off')
            ax_0_1.axis('off')
            ax_0_2.axis('off')
            ax_1_0.axis('off')
            ax_1_1.axis('off')
            ax_1_2.axis('off')
            ax_2_0.axis('off')
            ax_2_1.axis('off')
            ax_2_2.axis('off')

            axis_title(ax_0_0, "Cutout")
            ax_0_0.imshow(applyFourierFilterFull(patch, xp.fft.fftshift(ff)))
            axis_title(ax_0_1, "Template")
            ax_0_1.imshow(template)
            axis_title(ax_0_2, "Shifted Cutout\n(based on cross correlation)")
            ax_0_2.imshow(npatch.squeeze())

            axis_title(ax_1_0, u"Cross correlation\ncutout × template")
            ax_1_0.imshow(ccf)
            ax_1_0.plot([points[1]], [points[0]], fillstyle='none', **m_style)
            ax_1_0.plot([points2d[1]], [points2d[0]],
                        fillstyle='none',
                        **m_style_alt)
            ax_1_0.plot([vol_size / 2], [vol_size / 2], ",k")

            ax_1_1.text(
                0.5,
                0.8,
                "Red: 2D spline interpolation\nx: {:f}\ny: {:f}\nBlue: 1D spline interpolation\nx: {:f}\ny: {:f}"
                "\nBlack: center".format(x_diff, y_diff,
                                         points[0] - vol_size / 2,
                                         points[1] - vol_size / 2),
                fontsize=8,
                horizontalalignment='center',
                verticalalignment='center',
                transform=ax_1_1.transAxes)

            axis_title(ax_1_2, u"Cross correlation\nshifted cutout × template")
            ax_1_2.imshow(nccf)
            ax_1_2.plot([npoints[0]], [npoints[1]],
                        fillstyle='none',
                        **m_style)
            ax_1_2.plot([npoints2d[0]], [npoints2d[1]],
                        fillstyle='none',
                        **m_style_alt)
            ax_1_2.plot([vol_size / 2], [vol_size / 2], ",k")

            axis_title(ax_2_0, u"Zoom into red peak\nin CC cutout × template")
            d = 10

            points2d = list(xp.unravel_index(ccf.argmax(),
                                             ccf.shape)) + [points2d[-1]]
            peak = ccf[int(points2d[0]) - d:int(points2d[0]) + d,
                       int(points2d[1]) - d:int(points2d[1] + d)]
            ax_2_0.imshow(peak)

            axis_title(
                ax_2_1,
                u"Zoom into red peak\nin CC cutout × template\ninterpolated")
            ax_2_1.imshow(ii)

            ax_2_1.plot([y2 + (y_diff - ry) / k], [x2 + (x_diff - rx) / k],
                        fillstyle='none',
                        **m_style)
            ax_2_1.plot([y2], [x2], fillstyle='none', **m_style_alt)
            axis_title(ax_2_2, u"Cutout\nGaussian filter σ3")
            import scipy
            ax_2_2.imshow(scipy.ndimage.gaussian_filter(patch, 3))

            pp.savefig(
                "../Images/test/polish_particle_{:04d}_tiltimage_{:05.2f}_shift_{:.1f}.png"
                .format(particle_number, ang, dist))
        del img
    except Exception as e:
        print(e)
        x_diff = y_diff = 0

    print(
        f'{particle_number:3d} {ang:4d} {x_diff:5.2f} {y_diff:5.2f} {points2d1[0]-patch.shape[0]//2:.2f} {points2d1[1]-patch.shape[0]//2:.2f} {time.time()-t:5.3f}'
    )
    return particle_number, x_diff, y_diff, ang, 0, 0, particle_filename
Exemplo n.º 5
0
    meanT = meanUnderMask(tcp, mask, gpu=gpu)
    stdT = stdUnderMask(tcp, mask, meanT, gpu=gpu)

    if stdT > 1E-09:
        temp2 = (tcp - meanT) / stdT
        temp2 = temp * mask
    else:
        temp2 = tcp
        mask2 = mask
    if vcp.shape[0] != temp2.shape[0] or vcp.shape[1] != temp2.shape[
            1] or vcp.shape[2] != temp2.shape[2]:
        tempV = xp.zeros(vcp.shape)
        temp2 = paste_in_center(temp2, tempV, gpu=gpu)

    if vcp.shape[0] != mask.shape[0] or vcp.shape[1] != mask.shape[
            1] or vcp.shape[2] != mask.shape[2]:
        maskV = xp.zeros(vcp.shape)
        mask2 = paste_in_center(mask, maskV, gpu=gpu)

    meanV = meanVolUnderMask(vcp, temp2, gpu=gpu)
    stdV = stdVolUnderMask(vcp, mask2, meanV, gpu=gpu)

    from pytom.tompy.transform import rotate3d

    s = time.time()
    for i in range(num_angles):
        tcp2 = xp.array(rotate3d(temp, 10, 10, 10))
        m = FLCF(vcp, temp2, mask=mask2, stdV=stdV, gpu=gpu)

    print((time.time() - s))