Exemplo n.º 1
0
def rotateWeighting(weighting, z1, z2, x, mask=None, isReducedComplex=None, returnReducedComplex=False, binarize=False):
    """
    rotateWeighting: Rotates a frequency weighting volume around the center. If the volume provided is reduced complex, it will be rescaled to full size, ftshifted, rotated, iftshifted and scaled back to reduced size.
    @param weighting: A weighting volume
    @type weighting: L{pytom_volume.vol}
    @param z1: Z1 rotation angle
    @type z1: float
    @param z2: Z2 rotation angle
    @type z2: float
    @param x: X rotation angle
    @type x: float
    @param mask:=None is there a rotation mask? A mask with all = 1 will be generated otherwise. Such mask should be \
        provided anyway.
    @type mask: L{pytom_volume.vol}
    @param isReducedComplex: Either set to True or False. Will be determined otherwise
    @type isReducedComplex: bool
    @param returnReducedComplex: Return as reduced complex? (Default is False)
    @type returnReducedComplex: bool
    @param binarize: binarize weighting
    @type binarize: bool
    @return: weight as reduced complex volume
    @rtype: L{pytom_volume.vol_comp}
    """
    from pytom_volume import vol, limit, vol_comp
    from pytom_volume import rotate
    assert type(weighting) == vol or  type(weighting) == vol_comp, "rotateWeighting: input neither vol nor vol_comp"
    
    isReducedComplex = isReducedComplex or int(weighting.sizeX()/2)+1 == weighting.sizeZ();

    if isReducedComplex:
        #scale weighting to full size
        from pytom_fftplan import fftShift
        from pytom_volume import reducedToFull
        weighting = reducedToFull(weighting)
        fftShift(weighting, True)

    if not mask:
        mask = vol(weighting.sizeX(),weighting.sizeY(),weighting.sizeZ())
        mask.setAll(1)

    weightingRotated = vol(weighting.sizeX(),weighting.sizeY(),weighting.sizeZ())

    rotate(weighting,weightingRotated,z1,z2,x)
    weightingRotated = weightingRotated * mask
    
    if returnReducedComplex:
        from pytom_fftplan import fftShift
        from pytom_volume import fullToReduced
        fftShift(weightingRotated,True)
        returnVolume = fullToReduced(weightingRotated)
    else:
        returnVolume = weightingRotated

    if binarize:
        limit(returnVolume,0.5,0,0.5,1,True,True)
    
    return returnVolume
Exemplo n.º 2
0
def iftshift(data, inplace = True):
    """
    iftshift: Performs a inverse fourier shift of data. Data must be full, the center is not determined accordingly. Assumes center is always size/2.
    @param data: - a volume
    @type data: pytom_volume.vol or pytom_volume.vol_comp 
    @return: data inverse shifted
    @author: Thomas Hrabe
    """
    import pytom_fftplan
    if inplace:
        pytom_fftplan.fftShift(data,True)
        return data
    else:
        from pytom_volume import vol, vol_comp
        if data.__class__ == vol:
            dummy = vol(data)
        elif data.__class__ == vol_comp:
            dummy = vol_comp(data)
        pytom_fftplan.fftShift(dummy,True)
        return dummy
Exemplo n.º 3
0
def ftshift(data, inplace = True):
    """
    ftshift: Performs a forward fourier shift of data. Data must be full, the center is not determined accordingly. Assumes center is always size/2.
    @param data: - a volume
    @type data: pytom_volume.vol or pytom_volume.vol_comp
    @param inplace: true by default
    @type inplace: boolean
    @return: data shifted
    @author: Thomas Hrabe
    """
    import pytom_fftplan
    if inplace:
        pytom_fftplan.fftShift(data,False)
        return None
    else:
        from pytom_volume import vol, vol_comp
        if data.__class__ == vol:
            dummy = vol(data)
        elif data.__class__ == vol_comp:
            dummy = vol_comp(data)
        pytom_fftplan.fftShift(dummy,False)
        return dummy
Exemplo n.º 4
0
def calculate_averages(pl, binning, mask, outdir='./'):
    """
    calcuate averages for particle lists
    @param pl: particle list
    @type pl: L{pytom.basic.structures.ParticleList}
    @param binning: binning factor
    @type binning: C{int}

    last change: Jan 18 2020: error message for too few processes, FF
    """
    import os
    from pytom_volume import complexDiv, vol, pasteCenter
    from pytom.basic.fourier import fft, ifft
    from pytom.basic.correlation import FSC, determineResolution
    from pytom_fftplan import fftShift
    from pytom_volume import reducedToFull

    pls = pl.copy().splitByClass()
    res = {}
    freqs = {}
    wedgeSum = {}

    for pp in pls:
        # ignore the -1 class, which is used for storing the trash class
        class_label = pp[0].getClass()
        if class_label != '-1':
            assert len(pp) > 3
            if len(pp) >= 4 * mpi.size:
                spp = mpi._split_seq(pp, mpi.size)
            else:  # not enough particle to do averaging on one node
                spp = [None] * 2
                spp[0] = pp[:len(pp) // 2]
                spp[1] = pp[len(pp) // 2:]

            args = list(
                zip(spp, [True] * len(spp), [binning] * len(spp),
                    [False] * len(spp), [outdir] * len(spp)))
            avgs = mpi.parfor(paverage, args)

            even_a, even_w, odd_a, odd_w = None, None, None, None
            even_avgs = avgs[1::2]
            odd_avgs = avgs[::2]

            for a, w in even_avgs:
                if even_a is None:
                    even_a = a.getVolume()
                    even_w = w.getVolume()
                else:
                    even_a += a.getVolume()
                    even_w += w.getVolume()
                os.remove(a.getFilename())
                os.remove(w.getFilename())

            for a, w in odd_avgs:
                if odd_a is None:
                    odd_a = a.getVolume()
                    odd_w = w.getVolume()
                else:
                    odd_a += a.getVolume()
                    odd_w += w.getVolume()
                os.remove(a.getFilename())
                os.remove(w.getFilename())

            # determine the resolution
            # raise error message in case even_a == None - only one processor used
            if even_a == None:
                from pytom.basic.exceptions import ParameterError
                raise ParameterError(
                    'cannot split odd / even. Likely you used only one processor - use: mpirun -np 2 (or higher!)?!'
                )

            if mask and mask.__class__ == str:
                from pytom_volume import read, pasteCenter, vol

                maskBin = read(mask, 0, 0, 0, 0, 0, 0, 0, 0, 0, binning,
                               binning, binning)
                if even_a.sizeX() != maskBin.sizeX() or even_a.sizeY(
                ) != maskBin.sizeY() or even_a.sizeZ() != maskBin.sizeZ():
                    mask = vol(even_a.sizeX(), even_a.sizeY(), even_a.sizeZ())
                    mask.setAll(0)
                    pasteCenter(maskBin, mask)
                else:
                    mask = maskBin

            fsc = FSC(even_a, odd_a, int(even_a.sizeX() // 2), mask)
            band = determineResolution(fsc, 0.5)[1]

            aa = even_a + odd_a
            ww = even_w + odd_w
            fa = fft(aa)
            r = complexDiv(fa, ww)
            rr = ifft(r)
            rr.shiftscale(0.0, 1. / (rr.sizeX() * rr.sizeY() * rr.sizeZ()))

            res[class_label] = rr
            freqs[class_label] = band

            ww2 = reducedToFull(ww)
            fftShift(ww2, True)
            wedgeSum[class_label] = ww2
    print('done')
    return res, freqs, wedgeSum