def test_collate_models(self):
        """
        Test collate_batched_meshes returns items of the correct shapes and types.
        Check that when collate_batched_meshes is passed to Dataloader, batches of
        the correct shapes and types are returned.
        """
        # Load ShapeNetCore without specifying any particular categories.
        shapenet_dataset = ShapeNetCore(SHAPENET_PATH)
        # Randomly retrieve several objects from the dataset.
        rand_idxs = torch.randint(len(shapenet_dataset), (6, ))
        rand_objs = [shapenet_dataset[idx] for idx in rand_idxs]

        # Collate the randomly selected objects
        collated_meshes = collate_batched_meshes(rand_objs)
        verts, faces = (collated_meshes["verts"], collated_meshes["faces"])
        self.assertEqual(len(verts), 6)
        self.assertEqual(len(faces), 6)

        # Pass the custom collate_fn function to DataLoader and check elements
        # in batch have the correct shape.
        batch_size = 12
        shapenet_core_loader = DataLoader(shapenet_dataset,
                                          batch_size=batch_size,
                                          collate_fn=collate_batched_meshes)
        it = iter(shapenet_core_loader)
        object_batch = next(it)
        self.assertEqual(len(object_batch["synset_id"]), batch_size)
        self.assertEqual(len(object_batch["model_id"]), batch_size)
        self.assertEqual(len(object_batch["label"]), batch_size)
        self.assertEqual(object_batch["mesh"].verts_padded().shape[0],
                         batch_size)
        self.assertEqual(object_batch["mesh"].faces_padded().shape[0],
                         batch_size)
Exemplo n.º 2
0
    def test_catch_render_arg_errors(self):
        """
        Test rendering ShapeNetCore with invalid model_ids, categories or indices,
        and catch corresponding errors.
        """
        # Load ShapeNetCore.
        shapenet_dataset = ShapeNetCore(SHAPENET_PATH)

        # Try loading with an invalid model_id and catch error.
        with self.assertRaises(ValueError) as err:
            shapenet_dataset.render(model_ids=["piano0"])
        self.assertTrue("not found in the loaded dataset" in str(err.exception))

        # Try loading with an index out of bounds and catch error.
        with self.assertRaises(IndexError) as err:
            shapenet_dataset.render(idxs=[100000])
        self.assertTrue("are out of bounds" in str(err.exception))
    def test_load_shapenet_core(self):
        """
        Test loading both the entire ShapeNetCore dataset and a subset of the ShapeNetCore
        dataset. Check the loaded datasets return items of the correct shapes and types.
        """
        # Try loading ShapeNetCore with an invalid version number and catch error.
        with self.assertRaises(ValueError) as err:
            ShapeNetCore(SHAPENET_PATH, version=3)
        self.assertTrue(
            "Version number must be either 1 or 2." in str(err.exception))

        # Load ShapeNetCore without specifying any particular categories.
        shapenet_dataset = ShapeNetCore(SHAPENET_PATH, version=VERSION)

        # Count the number of grandchildren directories (which should be equal to
        # the total number of objects in the dataset) by walking through the given
        # directory.
        wnsynset_list = [
            wnsynset for wnsynset in os.listdir(SHAPENET_PATH)
            if os.path.isdir(os.path.join(SHAPENET_PATH, wnsynset))
        ]
        model_num_list = [
            (len(next(os.walk(os.path.join(SHAPENET_PATH, wnsynset)))[1]))
            for wnsynset in wnsynset_list
        ]
        # Check total number of objects in the dataset is correct.
        self.assertEqual(len(shapenet_dataset), sum(model_num_list))

        # Randomly retrieve an object from the dataset.
        rand_obj = shapenet_dataset[torch.randint(len(shapenet_dataset),
                                                  (1, ))]
        # Check that data types and shapes of items returned by __getitem__ are correct.
        verts, faces = rand_obj["verts"], rand_obj["faces"]
        self.assertTrue(verts.dtype == torch.float32)
        self.assertTrue(faces.dtype == torch.int64)
        self.assertEqual(verts.ndim, 2)
        self.assertEqual(verts.shape[-1], 3)
        self.assertEqual(faces.ndim, 2)
        self.assertEqual(faces.shape[-1], 3)

        # Load six categories from ShapeNetCore.
        # Specify categories with a combination of offsets and labels.
        shapenet_subset = ShapeNetCore(
            SHAPENET_PATH,
            synsets=[
                "04330267",
                "guitar",
                "02801938",
                "birdhouse",
                "03991062",
                "tower",
            ],
            version=1,
        )
        subset_offsets = [
            "04330267",
            "03467517",
            "02801938",
            "02843684",
            "03991062",
            "04460130",
        ]
        subset_model_nums = [
            (len(next(os.walk(os.path.join(SHAPENET_PATH, offset)))[1]))
            for offset in subset_offsets
        ]
        self.assertEqual(len(shapenet_subset), sum(subset_model_nums))
 def test_load_textures_false(self):
     shapenet_dataset = ShapeNetCore(SHAPENET_PATH,
                                     load_textures=False,
                                     version=VERSION)
     model = shapenet_dataset[0]
     self.assertIsNone(model["textures"])
    def test_render_shapenet_core(self):
        """
        Test rendering objects from ShapeNetCore.
        """
        # Setup device and seed for random selections.
        device = torch.device("cuda:0")
        torch.manual_seed(39)

        # Load category piano from ShapeNetCore.
        piano_dataset = ShapeNetCore(SHAPENET_PATH, synsets=["piano"])

        # Rendering settings.
        R, T = look_at_view_transform(1.0, 1.0, 90)
        cameras = FoVPerspectiveCameras(R=R, T=T, device=device)
        raster_settings = RasterizationSettings(image_size=512)
        lights = PointLights(
            location=torch.tensor([0.0, 1.0, -2.0], device=device)[None],
            # TODO: debug the source of the discrepancy in two images when rendering on GPU.
            diffuse_color=((0, 0, 0), ),
            specular_color=((0, 0, 0), ),
            device=device,
        )

        # Render first three models in the piano category.
        pianos = piano_dataset.render(
            idxs=list(range(3)),
            device=device,
            cameras=cameras,
            raster_settings=raster_settings,
            lights=lights,
        )
        # Check that there are three images in the batch.
        self.assertEqual(pianos.shape[0], 3)

        # Compare the rendered models to the reference images.
        for idx in range(3):
            piano_rgb = pianos[idx, ..., :3].squeeze().cpu()
            if DEBUG:
                Image.fromarray(
                    (piano_rgb.numpy() * 255).astype(np.uint8)).save(
                        DATA_DIR /
                        ("DEBUG_shapenet_core_render_piano_by_idxs_%s.png" %
                         idx))
            image_ref = load_rgb_image(
                "test_shapenet_core_render_piano_%s.png" % idx, DATA_DIR)
            self.assertClose(piano_rgb, image_ref, atol=0.05)

        # Render the same piano models but by model_ids this time.
        pianos_2 = piano_dataset.render(
            model_ids=[
                "13394ca47c89f91525a3aaf903a41c90",
                "14755c2ee8e693aba508f621166382b0",
                "156c4207af6d2c8f1fdc97905708b8ea",
            ],
            device=device,
            cameras=cameras,
            raster_settings=raster_settings,
            lights=lights,
        )

        # Compare the rendered models to the reference images.
        for idx in range(3):
            piano_rgb_2 = pianos_2[idx, ..., :3].squeeze().cpu()
            if DEBUG:
                Image.fromarray(
                    (piano_rgb_2.numpy() * 255).astype(np.uint8)).save(
                        DATA_DIR /
                        ("DEBUG_shapenet_core_render_piano_by_ids_%s.png" %
                         idx))
            image_ref = load_rgb_image(
                "test_shapenet_core_render_piano_%s.png" % idx, DATA_DIR)
            self.assertClose(piano_rgb_2, image_ref, atol=0.05)

        #######################
        # Render by categories
        #######################

        # Load ShapeNetCore.
        shapenet_dataset = ShapeNetCore(SHAPENET_PATH)

        # Render a mixture of categories and specify the number of models to be
        # randomly sampled from each category.
        mixed_objs = shapenet_dataset.render(
            categories=["faucet", "chair"],
            sample_nums=[2, 1],
            device=device,
            cameras=cameras,
            raster_settings=raster_settings,
            lights=lights,
        )
        # Compare the rendered models to the reference images.
        for idx in range(3):
            mixed_rgb = mixed_objs[idx, ..., :3].squeeze().cpu()
            if DEBUG:
                Image.fromarray(
                    (mixed_rgb.numpy() * 255).astype(np.uint8)
                ).save(
                    DATA_DIR /
                    ("DEBUG_shapenet_core_render_mixed_by_categories_%s.png" %
                     idx))
            image_ref = load_rgb_image(
                "test_shapenet_core_render_mixed_by_categories_%s.png" % idx,
                DATA_DIR)
            self.assertClose(mixed_rgb, image_ref, atol=0.05)

        # Render a mixture of categories without specifying sample_nums.
        mixed_objs_2 = shapenet_dataset.render(
            categories=["faucet", "chair"],
            device=device,
            cameras=cameras,
            raster_settings=raster_settings,
            lights=lights,
        )
        # Compare the rendered models to the reference images.
        for idx in range(2):
            mixed_rgb_2 = mixed_objs_2[idx, ..., :3].squeeze().cpu()
            if DEBUG:
                Image.fromarray(
                    (mixed_rgb_2.numpy() * 255).astype(np.uint8)
                ).save(
                    DATA_DIR /
                    ("DEBUG_shapenet_core_render_without_sample_nums_%s.png" %
                     idx))
            image_ref = load_rgb_image(
                "test_shapenet_core_render_without_sample_nums_%s.png" % idx,
                DATA_DIR)
            self.assertClose(mixed_rgb_2, image_ref, atol=0.05)
WANDB = False

if WANDB:
    wandb.init(project="pixel2mesh", entity="leogrin")

# Set the device
if torch.cuda.is_available():
    device = torch.device("cuda:0")
else:
    device = torch.device("cpu")
    print("WARNING: CPU only, this will be slow!")
#device = torch.device("cpu")
#DATA:

SHAPENET_PATH = "/Data/leo/Pixel2Mesh_3d/dataset/ShapeNetCore.v2"
shapenet_dataset = ShapeNetCore(SHAPENET_PATH, version=2, synsets=["airplane"])

#shapenet_model = shapenet_dataset[6]
#print("This model belongs to the category " + shapenet_model["synset_id"] + ".")
#print("This model has model id " + shapenet_model["model_id"] + ".")
#model_verts, model_faces = shapenet_model["verts"], shapenet_model["faces"]

#DataLoader

shapenet_loader = DataLoader(shapenet_dataset, batch_size=1, collate_fn=collate_batched_meshes, shuffle = True)


#SETTINGS
# We initialize the source shape to be a sphere of radius 1
block1 = ico_sphere(2, device)
uppooling1 = SubdivideMeshes(block1)
Exemplo n.º 7
0
    def test_load_shapenet_core(self):

        # The ShapeNet dataset is not provided in the repo.
        # Download this separately and update the `shapenet_path`
        # with the location of the dataset in order to run this test.
        if SHAPENET_PATH is None or not os.path.exists(SHAPENET_PATH):
            url = "https://www.shapenet.org/"
            msg = """ShapeNet data not found, download from %s, save it at the path %s,
                update SHAPENET_PATH at the top of the file, and rerun""" % (
                url,
                SHAPENET_PATH,
            )
            warnings.warn(msg)
            return True

        # Try load ShapeNetCore with an invalid version number and catch error.
        with self.assertRaises(ValueError) as err:
            ShapeNetCore(SHAPENET_PATH, version=3)
        self.assertTrue(
            "Version number must be either 1 or 2." in str(err.exception))

        # Load ShapeNetCore without specifying any particular categories.
        shapenet_dataset = ShapeNetCore(SHAPENET_PATH)

        # Count the number of grandchildren directories (which should be equal to
        # the total number of objects in the dataset) by walking through the given
        # directory.
        wnsynset_list = [
            wnsynset for wnsynset in os.listdir(SHAPENET_PATH)
            if os.path.isdir(os.path.join(SHAPENET_PATH, wnsynset))
        ]
        model_num_list = [
            (len(next(os.walk(os.path.join(SHAPENET_PATH, wnsynset)))[1]))
            for wnsynset in wnsynset_list
        ]
        # Check total number of objects in the dataset is correct.
        self.assertEqual(len(shapenet_dataset), sum(model_num_list))

        # Randomly retrieve an object from the dataset.
        rand_obj = random.choice(shapenet_dataset)
        self.assertEqual(len(rand_obj), 5)
        # Check that data types and shapes of items returned by __getitem__ are correct.
        verts, faces = rand_obj["verts"], rand_obj["faces"]
        self.assertTrue(verts.dtype == torch.float32)
        self.assertTrue(faces.dtype == torch.int64)
        self.assertEqual(verts.ndim, 2)
        self.assertEqual(verts.shape[-1], 3)
        self.assertEqual(faces.ndim, 2)
        self.assertEqual(faces.shape[-1], 3)

        # Load six categories from ShapeNetCore.
        # Specify categories in the form of a combination of offsets and labels.
        shapenet_subset = ShapeNetCore(
            SHAPENET_PATH,
            synsets=[
                "04330267",
                "guitar",
                "02801938",
                "birdhouse",
                "03991062",
                "tower",
            ],
            version=1,
        )
        subset_offsets = [
            "04330267",
            "03467517",
            "02801938",
            "02843684",
            "03991062",
            "04460130",
        ]
        subset_model_nums = [
            (len(next(os.walk(os.path.join(SHAPENET_PATH, offset)))[1]))
            for offset in subset_offsets
        ]
        self.assertEqual(len(shapenet_subset), sum(subset_model_nums))
Exemplo n.º 8
0
from pytorch3d.structures import Meshes
from torch.utils.data import DataLoader

# add path for demo utils functions
sys.path.append(os.path.abspath(''))
from plot_image_grid import image_grid

# Setup
if torch.cuda.is_available():
    device = torch.device("cuda:0")
    torch.cuda.set_device(device)
else:
    device = torch.device("cpu")

SHAPENET_PATH = "/Data/leo/Pixel2Mesh_3d/dataset/ShapeNetCore.v2"
shapenet_dataset = ShapeNetCore(SHAPENET_PATH, version=2, synsets=["airplane"])

#shapenet_model = shapenet_dataset[6]
#print("This model belongs to the category " + shapenet_model["synset_id"] + ".")
#print("This model has model id " + shapenet_model["model_id"] + ".")
#model_verts, model_faces = shapenet_model["verts"], shapenet_model["faces"]

#DataLoader

shapenet_loader = DataLoader(shapenet_dataset,
                             batch_size=12,
                             collate_fn=collate_batched_meshes)

#it = iter(shapenet_loader)
#shapenet_batch = next(it)
#print(shapenet_batch.keys())