Exemplo n.º 1
0
def meshes_collate(batch):
    r"""Puts each data field into a tensor with outer dimension batch size"""

    elem = batch[0]
    elem_type = type(elem)
    if isinstance(elem, torch.Tensor):
        out = None
        if torch.utils.data.get_worker_info() is not None:
            # If we're in a background process, concatenate directly into a
            # shared memory tensor to avoid an extra copy
            numel = sum([x.numel() for x in batch])
            storage = elem.storage()._new_shared(numel)
            out = elem.new(storage)
        return torch.stack(batch, 0, out=out)
    elif elem_type.__module__ == 'numpy' and elem_type.__name__ != 'str_' \
            and elem_type.__name__ != 'string_':
        elem = batch[0]
        if elem_type.__name__ == 'ndarray':
            # array of string classes and object
            if collate.np_str_obj_array_pattern.search(
                    elem.dtype.str) is not None:
                raise TypeError(
                    collate.default_collate_err_msg_format.format(elem.dtype))

            return meshes_collate([torch.as_tensor(b) for b in batch])
        elif elem.shape == ():  # scalars
            return torch.as_tensor(batch)
    elif isinstance(elem, float):
        return torch.tensor(batch, dtype=torch.float64)
    elif isinstance(elem, collate.int_classes):
        return torch.tensor(batch)
    elif isinstance(elem, collate.string_classes):
        return batch
    elif isinstance(elem, collate.container_abcs.Mapping):
        return {key: meshes_collate([d[key] for d in batch]) for key in elem}
    elif isinstance(elem, tuple) and hasattr(elem, '_fields'):  # namedtuple
        return elem_type(*(meshes_collate(samples) for samples in zip(*batch)))
    elif isinstance(elem, collate.container_abcs.Sequence):
        transposed = zip(*batch)
        return [meshes_collate(samples) for samples in transposed]
    elif isinstance(elem, Meshes):
        return join_meshes_as_batch(batch)

    raise TypeError(collate.default_collate_err_msg_format.format(elem_type))
Exemplo n.º 2
0
    def test_batch_uvs(self):
        """Test that two random tori with TexturesUV render the same as each individually."""
        torch.manual_seed(1)
        device = torch.device("cuda:0")
        plain_torus = torus(r=1, R=4, sides=10, rings=10, device=device)
        [verts] = plain_torus.verts_list()
        [faces] = plain_torus.faces_list()
        nocolor = torch.zeros((100, 100), device=device)
        color_gradient = torch.linspace(0, 1, steps=100, device=device)
        color_gradient1 = color_gradient[None].expand_as(nocolor)
        color_gradient2 = color_gradient[:, None].expand_as(nocolor)
        colors1 = torch.stack([nocolor, color_gradient1, color_gradient2], dim=2)
        colors2 = torch.stack([color_gradient1, color_gradient2, nocolor], dim=2)
        verts_uvs1 = torch.rand(size=(verts.shape[0], 2), device=device)
        verts_uvs2 = torch.rand(size=(verts.shape[0], 2), device=device)

        textures1 = TexturesUV(
            maps=[colors1], faces_uvs=[faces], verts_uvs=[verts_uvs1]
        )
        textures2 = TexturesUV(
            maps=[colors2], faces_uvs=[faces], verts_uvs=[verts_uvs2]
        )
        mesh1 = Meshes(verts=[verts], faces=[faces], textures=textures1)
        mesh2 = Meshes(verts=[verts], faces=[faces], textures=textures2)
        mesh_both = join_meshes_as_batch([mesh1, mesh2])

        R, T = look_at_view_transform(10, 10, 0)
        cameras = FoVPerspectiveCameras(device=device, R=R, T=T)

        raster_settings = RasterizationSettings(
            image_size=128, blur_radius=0.0, faces_per_pixel=1
        )

        # Init shader settings
        lights = PointLights(device=device)
        lights.location = torch.tensor([0.0, 0.0, 2.0], device=device)[None]

        blend_params = BlendParams(
            sigma=1e-1,
            gamma=1e-4,
            background_color=torch.tensor([1.0, 1.0, 1.0], device=device),
        )
        # Init renderer
        renderer = MeshRenderer(
            rasterizer=MeshRasterizer(cameras=cameras, raster_settings=raster_settings),
            shader=HardPhongShader(
                device=device, lights=lights, cameras=cameras, blend_params=blend_params
            ),
        )

        outputs = []
        for meshes in [mesh_both, mesh1, mesh2]:
            outputs.append(renderer(meshes))

        if DEBUG:
            Image.fromarray(
                (outputs[0][0, ..., :3].cpu().numpy() * 255).astype(np.uint8)
            ).save(DATA_DIR / "test_batch_uvs0.png")
            Image.fromarray(
                (outputs[1][0, ..., :3].cpu().numpy() * 255).astype(np.uint8)
            ).save(DATA_DIR / "test_batch_uvs1.png")
            Image.fromarray(
                (outputs[0][1, ..., :3].cpu().numpy() * 255).astype(np.uint8)
            ).save(DATA_DIR / "test_batch_uvs2.png")
            Image.fromarray(
                (outputs[2][0, ..., :3].cpu().numpy() * 255).astype(np.uint8)
            ).save(DATA_DIR / "test_batch_uvs3.png")

            diff = torch.abs(outputs[0][0, ..., :3] - outputs[1][0, ..., :3])
            Image.fromarray(((diff > 1e-5).cpu().numpy().astype(np.uint8) * 255)).save(
                DATA_DIR / "test_batch_uvs01.png"
            )
            diff = torch.abs(outputs[0][1, ..., :3] - outputs[2][0, ..., :3])
            Image.fromarray(((diff > 1e-5).cpu().numpy().astype(np.uint8) * 255)).save(
                DATA_DIR / "test_batch_uvs23.png"
            )

        self.assertClose(outputs[0][0, ..., :3], outputs[1][0, ..., :3], atol=1e-5)
        self.assertClose(outputs[0][1, ..., :3], outputs[2][0, ..., :3], atol=1e-5)