Exemplo n.º 1
0
def main():
    import random
    import numpy as np
    import torch
    import torch.nn as nn

    print(np.random.rand(10))
    print(random.random())
    print(nn.Conv2d(2, 2, 3, 1, 0).weight.data)
    print(torch.backends.cudnn.deterministic)
    print(torch.backends.cudnn.benchmark)

    print('------')

    with fixed_seed(0, True):
        print(np.random.rand(10))
        print(random.random())
        print(nn.Conv2d(2, 2, 3, 1, 0).weight.data)
        print(torch.backends.cudnn.deterministic)
        print(torch.backends.cudnn.benchmark)

    print(np.random.rand(10))
    print(random.random())
    print(nn.Conv2d(2, 2, 3, 1, 0).weight.data)

    print(torch.backends.cudnn.deterministic)
    print(torch.backends.cudnn.benchmark)
def main():

    parser = argparse.ArgumentParser(
        description='Example: Uncertainty estimates in segmentation',
        formatter_class=argparse.ArgumentDefaultsHelpFormatter)
    parser.add_argument('--data_root',
                        '-d',
                        type=str,
                        default='./preprocessed',
                        help='Directory to dataset')
    parser.add_argument('--batchsize',
                        '-b',
                        type=int,
                        default=2,
                        help='Number of images in each mini-batch')
    parser.add_argument('--iteration',
                        '-i',
                        type=int,
                        default=50000,
                        help='Number of sweeps over the dataset to train')
    parser.add_argument('--frequency',
                        '-f',
                        type=int,
                        default=-1,
                        help='Frequency of taking a snapshot')
    parser.add_argument('--gpu',
                        '-g',
                        type=str,
                        default='cuda:0',
                        help='GPU Device')
    parser.add_argument('--out',
                        '-o',
                        default='logs',
                        help='Directory to output the result')
    parser.add_argument('--resume',
                        '-r',
                        default='',
                        help='Resume the training from snapshot')
    parser.add_argument('--valid_augment',
                        action='store_true',
                        help='Enable data augmentation during validation')
    parser.add_argument('--valid_split_ratio',
                        type=float,
                        default=0.1,
                        help='Ratio of validation data to training data')
    parser.add_argument(
        '--valid_split_type',
        type=str,
        default='slice',
        choices=['slice', 'patient'],
        help='How to choice validation data from training data')
    parser.add_argument('--lr', type=float, default=1e-4, help='Learning rate')
    parser.add_argument('--decay',
                        type=float,
                        default=-1,
                        help='Weight of L2 regularization')
    parser.add_argument('--mc_iteration',
                        type=int,
                        default=15,
                        help='Number of iteration of MCMC')
    parser.add_argument('--pinfall',
                        type=int,
                        default=-1,
                        help='Countdown for early stopping of training.')
    parser.add_argument(
        '--freeze_upconv',
        action='store_true',
        help=
        'Disables updating the up-convolutional weights. If weights are initialized with \
                            bilinear kernels, up-conv acts as bilinear upsampler.'
    )
    parser.add_argument('--test_on_test',
                        action='store_true',
                        help='Switch to the testing phase on test dataset')
    parser.add_argument('--test_on_valid',
                        action='store_true',
                        help='Switch to the testing phase on valid dataset')
    parser.add_argument('--seed',
                        type=int,
                        default=0,
                        help='Fix the random seed')
    args = parser.parse_args()

    print('GPU: {}'.format(args.gpu))
    print('# Minibatch-size: {}'.format(args.batchsize))
    print('')

    # setup output directory
    os.makedirs(args.out, exist_ok=True)

    # NOTE: ad-hoc
    # setup a normalizer
    normalizer = Normalizer()
    normalizer.add(Clip2D('minmax'))
    normalizer.add(Subtract2D(0.5))
    normalizer.add(Divide2D(1. / 255.))

    # setup an augmentor
    augmentor = DataAugmentor(n_dim=2)
    augmentor.add(Flip2D(axis=2))
    augmentor.add(
        Affine2D(rotation=15.,
                 translate=(10., 10.),
                 shear=0.25,
                 zoom=(0.8, 1.2),
                 keep_aspect_ratio=True,
                 fill_mode=('reflect', 'reflect'),
                 cval=(0., 0.),
                 interp_order=(1, 0)))

    with fixed_seed(args.seed, strict=False):

        # setup a predictor
        conv_param = { # NOTE: you can change layer type if you want..
            'name':'conv',
            'kernel_size': 3,
            'stride': 1,
            'padding': 2,
            'padding_mode': 'reflect',
            'dilation': 2,
            'initialW': {'name': 'he_normal'},
            'initial_bias': {'name': 'zero'},
        }

        upconv_param = { # NOTE: you can change layer type if you want..
            'name':'deconv',
            'kernel_size': 3,
            'stride': 2,
            'padding': 0,
            'initialW': {'name': 'bilinear'},
            'initial_bias': {'name': 'zero'},
        }

        norm_param = {'name': 'batch'}

        predictor = BayesianUNet(ndim=2,
                                 in_channels=3,
                                 out_channels=2,
                                 nlayer=4,
                                 nfilter=32,
                                 conv_param=conv_param,
                                 upconv_param=upconv_param,
                                 norm_param=norm_param)

        if args.freeze_upconv:
            predictor.freeze_layers(name='upconv',
                                    recursive=True,
                                    verbose=True)

        # setup dataset
        train, valid, test = get_dataset(args.data_root, args.valid_split_type,
                                         args.valid_split_ratio,
                                         args.valid_augment, normalizer,
                                         augmentor)

        # run
        if args.test_on_test:
            test_phase(predictor, test, args)
        elif args.test_on_valid:
            test_phase(predictor, valid, args)
        else:
            save_args(args, args.out)
            predictor.save_args(os.path.join(args.out, 'model.json'))
            normalizer.summary(os.path.join(args.out, 'norm.json'))
            augmentor.summary(os.path.join(args.out, 'augment.json'))

            train_phase(predictor, train, valid, args)
Exemplo n.º 3
0
def main():
    parser = argparse.ArgumentParser(
        description='Example: Uncertainty estimates in regression')
    parser.add_argument('--batchsize',
                        '-b',
                        type=int,
                        default=50,
                        help='Number of images in each mini-batch')
    parser.add_argument('--epoch',
                        '-e',
                        type=int,
                        default=300,
                        help='Number of sweeps over the dataset to train')
    parser.add_argument('--frequency',
                        '-f',
                        type=int,
                        default=-1,
                        help='Frequency of taking a snapshot')
    parser.add_argument('--gpu',
                        '-g',
                        type=str,
                        default='cuda:0',
                        help='GPU Device')
    parser.add_argument('--out',
                        '-o',
                        default='logs',
                        help='Directory to output the log files')
    parser.add_argument('--resume',
                        '-r',
                        default='',
                        help='Resume the training from snapshot')
    parser.add_argument('--unit',
                        '-u',
                        type=int,
                        default=20,
                        help='Number of units')
    parser.add_argument('--noplot',
                        dest='plot',
                        action='store_false',
                        help='Disable PlotReport extension')
    parser.add_argument('--test_on_test',
                        action='store_true',
                        help='Switch to the testing phase on test dataset')
    parser.add_argument('--test_on_valid',
                        action='store_true',
                        help='Switch to the testing phase on valid dataset')
    parser.add_argument('--mc_iteration',
                        type=int,
                        default=50,
                        help='Number of iteration of MCMC')
    parser.add_argument('--decay',
                        type=float,
                        default=-1,
                        help='Weight of L2 regularization')
    parser.add_argument('--seed',
                        type=int,
                        default=0,
                        help='Fix the random seed')
    args = parser.parse_args()

    os.makedirs(args.out, exist_ok=True)

    with fixed_seed(args.seed, strict=False):

        # setup a predictor
        predictor = BayesianMLP(n_in=1,
                                n_units=args.unit,
                                n_out=1,
                                drop_ratio=0.1)

        # setup dataset
        train = Dataset(x_lim=(-5, 5), n_samples=1000)
        valid = Dataset(x_lim=(-5, 5), n_samples=1000)
        test = Dataset(x_lim=(-10, 10), n_samples=500)

        # run
        if args.test_on_test:
            test_phase(predictor, test, args)
        elif args.test_on_valid:
            test_phase(predictor, valid, args)
        else:
            train_phase(predictor, train, valid, args)
def main():

    parser = argparse.ArgumentParser(description='Example: Uncertainty estimates with adversarial training in image synthesis',
                                     formatter_class=argparse.ArgumentDefaultsHelpFormatter)
    parser.add_argument('--data_root', '-d', type=str, default='./preprocessed',
                        help='Directory to dataset')
    parser.add_argument('--batchsize', '-b', type=int, default=5,
                        help='Number of images in each mini-batch')
    parser.add_argument('--iteration', '-i', type=int, default=200000,
                        help='Number of sweeps over the dataset to train')
    parser.add_argument('--frequency', '-f', type=int, default=-1,
                        help='Frequency of taking a snapshot')
    parser.add_argument('--gpu', '-g', type=str, default='cuda:0',
                        help='GPU Device')
    parser.add_argument('--out', '-o', default='logs',
                        help='Directory to output the result')
    parser.add_argument('--resume', '-r', default='',
                        help='Resume the training from snapshot')
    parser.add_argument('--valid_augment', action='store_true',
                        help='Enable data augmentation during validation')
    parser.add_argument('--valid_split_ratio', type=float, default=0.1,
                        help='Ratio of validation data to training data')
    parser.add_argument('--lr', type=float, default=4e-4,
                        help='Learning rate')
    parser.add_argument('--alpha', type=float, default=50.,
                        help='Weight of conditional loss')
    parser.add_argument('--beta', type=float, default=0.5,
                        help='Exponential decay rate of the first order moment in Adam')
    parser.add_argument('--decay', type=float, default=-1,
                        help='Weight of L2 regularization')
    parser.add_argument('--mc_iteration', type=int, default=15,
                        help='Number of iteration of MCMC')
    parser.add_argument('--pinfall', type=int, default=-1,
                        help='Countdown for early stopping of training.')
    parser.add_argument('--freeze_upconv', action='store_true',
                        help='Disables updating the up-convolutional weights. If weights are initialized with \
                            bilinear kernels, up-conv acts as bilinear upsampler.')
    parser.add_argument('--test_on_test', action='store_true',
                        help='Switch to the testing phase on test dataset')
    parser.add_argument('--test_on_valid', action='store_true',
                        help='Switch to the testing phase on valid dataset')
    parser.add_argument('--seed', type=int, default=0,
                        help='Fix the random seed')
    args = parser.parse_args()

    print('GPU: {}'.format(args.gpu))
    print('# Minibatch-size: {}'.format(args.batchsize))
    print('')

    # setup output directory
    os.makedirs(args.out, exist_ok=True)

    # NOTE: ad-hoc
    normalizer = get_normalizer()
    augmentor = get_augmentor()

    # setup a generator
    with fixed_seed(args.seed, strict=False):

        generator = build_generator()

        if args.freeze_upconv:
            generator.freeze_layers(name='upconv',
                                    recursive=True,
                                    verbose=True)

        # setup dataset
        train, valid, test = get_dataset(args.data_root,
                                         args.valid_split_ratio,
                                         args.valid_augment,
                                         normalizer, augmentor)

        # run
        if args.test_on_test:
            raise RuntimeError('This example is under construction. Please tune the hyperparameters first..')
            test_phase(generator, test, args)
        elif args.test_on_valid:
            test_phase(generator, valid, args)
        else:
            save_args(args, args.out)
            generator.save_args(os.path.join(args.out, 'model.json'))
            normalizer.summary(os.path.join(args.out, 'norm.json'))
            augmentor.summary(os.path.join(args.out, 'augment.json'))

            train_phase(generator, train, valid, args)