Exemplo n.º 1
0
def main():
    global global_step

    config = load_config()

    set_seed(config)
    setup_cudnn(config)

    epoch_seeds = np.random.randint(np.iinfo(np.int32).max // 2,
                                    size=config.scheduler.epochs)

    if config.train.distributed:
        dist.init_process_group(backend=config.train.dist.backend,
                                init_method=config.train.dist.init_method,
                                rank=config.train.dist.node_rank,
                                world_size=config.train.dist.world_size)
        torch.cuda.set_device(config.train.dist.local_rank)

    output_dir = pathlib.Path(config.train.output_dir)
    if get_rank() == 0:
        if not config.train.resume and output_dir.exists():
            raise RuntimeError(
                f'Output directory `{output_dir.as_posix()}` already exists')
        output_dir.mkdir(exist_ok=True, parents=True)
        if not config.train.resume:
            save_config(config, output_dir / 'config.yaml')
            save_config(get_env_info(config), output_dir / 'env.yaml')
            diff = find_config_diff(config)
            if diff is not None:
                save_config(diff, output_dir / 'config_min.yaml')

    logger = create_logger(name=__name__,
                           distributed_rank=get_rank(),
                           output_dir=output_dir,
                           filename='log.txt')
    logger.info(config)
    logger.info(get_env_info(config))

    train_loader, val_loader = create_dataloader(config, is_train=True)

    model = create_model(config)
    macs, n_params = count_op(config, model)
    logger.info(f'MACs  : {macs}')
    logger.info(f'#params: {n_params}')

    optimizer = create_optimizer(config, model)
    model, optimizer = apex.amp.initialize(model,
                                           optimizer,
                                           opt_level=config.train.precision)
    model = apply_data_parallel_wrapper(config, model)

    scheduler = create_scheduler(config,
                                 optimizer,
                                 steps_per_epoch=len(train_loader))
    checkpointer = Checkpointer(model,
                                optimizer=optimizer,
                                scheduler=scheduler,
                                save_dir=output_dir,
                                save_to_disk=get_rank() == 0)

    start_epoch = config.train.start_epoch
    scheduler.last_epoch = start_epoch
    if config.train.resume:
        checkpoint_config = checkpointer.resume_or_load('', resume=True)
        global_step = checkpoint_config['global_step']
        start_epoch = checkpoint_config['epoch']
        config.defrost()
        config.merge_from_other_cfg(ConfigNode(checkpoint_config['config']))
        config.freeze()
    elif config.train.checkpoint != '':
        checkpoint = torch.load(config.train.checkpoint, map_location='cpu')
        if isinstance(model,
                      (nn.DataParallel, nn.parallel.DistributedDataParallel)):
            model.module.load_state_dict(checkpoint['model'])
        else:
            model.load_state_dict(checkpoint['model'])

    if get_rank() == 0 and config.train.use_tensorboard:
        tensorboard_writer = create_tensorboard_writer(
            config, output_dir, purge_step=config.train.start_epoch + 1)
        tensorboard_writer2 = create_tensorboard_writer(
            config, output_dir / 'running', purge_step=global_step + 1)
    else:
        tensorboard_writer = DummyWriter()
        tensorboard_writer2 = DummyWriter()

    train_loss, val_loss = create_loss(config)

    if (config.train.val_period > 0 and start_epoch == 0
            and config.train.val_first):
        validate(0, config, model, val_loss, val_loader, logger,
                 tensorboard_writer)

    for epoch, seed in enumerate(epoch_seeds[start_epoch:], start_epoch):
        epoch += 1

        np.random.seed(seed)
        train(epoch, config, model, optimizer, scheduler, train_loss,
              train_loader, logger, tensorboard_writer, tensorboard_writer2)

        if config.train.val_period > 0 and (epoch %
                                            config.train.val_period == 0):
            validate(epoch, config, model, val_loss, val_loader, logger,
                     tensorboard_writer)

        tensorboard_writer.flush()
        tensorboard_writer2.flush()

        if (epoch % config.train.checkpoint_period == 0) or (
                epoch == config.scheduler.epochs):
            checkpoint_config = {
                'epoch': epoch,
                'global_step': global_step,
                'config': config.as_dict(),
            }
            checkpointer.save(f'checkpoint_{epoch:05d}', **checkpoint_config)

    tensorboard_writer.close()
    tensorboard_writer2.close()
Exemplo n.º 2
0
def main():
    global global_step

    config = load_config()

    set_seed(config)
    setup_cudnn(config)

    # np.iinfo(np_type).max: machine limit (upper bound) of the this type
    # every epoch will have a specific epoch seed
    epoch_seeds = np.random.randint(np.iinfo(np.int32).max // 2,
                                    size=config.scheduler.epochs)

    if config.train.distributed:
        dist.init_process_group(backend=config.train.dist.backend,
                                init_method=config.train.dist.init_method,
                                rank=config.train.dist.node_rank,
                                world_size=config.train.dist.world_size)
        torch.cuda.set_device(config.train.dist.local_rank)

    output_dir = pathlib.Path(config.train.output_dir)
    if get_rank() == 0:
        if not config.train.resume and output_dir.exists():
            raise RuntimeError(
                f'Output directory `{output_dir.as_posix()}` already exists')
        output_dir.mkdir(exist_ok=True, parents=True)
        if not config.train.resume:
            # if we need to resume training, current config, environment info and the difference between
            # the current and default config will be saved.
            save_config(config, output_dir / 'config.yaml')
            save_config(get_env_info(config), output_dir / 'env.yaml')
            diff = find_config_diff(config)
            if diff is not None:
                save_config(diff, output_dir / 'config_min.yaml')

    logger = create_logger(name=__name__,
                           distributed_rank=get_rank(),
                           output_dir=output_dir,
                           filename='log.txt')
    logger.info(config)
    logger.info(get_env_info(config))

    train_loader, val_loader = create_dataloader(config, is_train=True)

    model = create_model(config)
    # Multiply-and-ACcumulate(MAC): ops
    macs, n_params = count_op(config, model)
    logger.info(f'MACs   : {macs}')
    logger.info(f'#params: {n_params}')
    # creating optimizer: SGD with nesterov momentum, adam, amsgrad, adabound, adaboundw or lars.
    optimizer = create_optimizer(config, model)
    # some AMP(Automatic mixed precision) settings
    if config.device != 'cpu':
        model, optimizer = apex.amp.initialize(
            model, optimizer, opt_level=config.train.precision)
    # create data parallel model or distributed data
    model = apply_data_parallel_wrapper(config, model)

    # set up scheduler and warm up scheduler
    # steps per epoch: how many batches in an epoch
    scheduler = create_scheduler(config,
                                 optimizer,
                                 steps_per_epoch=len(train_loader))
    # create checkponit, do ot use torch's default checkpoint saver because it can't save scheduler
    checkpointer = Checkpointer(model,
                                optimizer=optimizer,
                                scheduler=scheduler,
                                save_dir=output_dir,
                                save_to_disk=get_rank() == 0)

    start_epoch = config.train.start_epoch
    # last_epoch is used to resume training, here normally we should start from config.train.start_epoch
    scheduler.last_epoch = start_epoch
    # The resume training supports multiple modes:
    # 1. resume = True, loading model from the last training checkpoint and following the global step and config
    # 2. resume = False, training checkpoint is specified, load checkpoint to cpu
    if config.train.resume:
        checkpoint_config = checkpointer.resume_or_load('', resume=True)
        global_step = checkpoint_config['global_step']
        start_epoch = checkpoint_config['epoch']
        config.defrost()
        config.merge_from_other_cfg(ConfigNode(checkpoint_config['config']))
        config.freeze()
    elif config.train.checkpoint != '':
        checkpoint = torch.load(config.train.checkpoint, map_location='cpu')
        if isinstance(model,
                      (nn.DataParallel, nn.parallel.DistributedDataParallel)):
            model.module.load_state_dict(checkpoint['model'])
        else:
            model.load_state_dict(checkpoint['model'])
    # Two TensorBoard writer:
    # First writer for this run of training(maybe it's resuming training)
    # Second writer follows the global steps and records the global run.
    if get_rank() == 0 and config.train.use_tensorboard:
        tensorboard_writer = create_tensorboard_writer(
            config, output_dir, purge_step=config.train.start_epoch + 1)
        tensorboard_writer2 = create_tensorboard_writer(
            config, output_dir / 'running', purge_step=global_step + 1)
    else:
        tensorboard_writer = DummyWriter()
        tensorboard_writer2 = DummyWriter()

    train_loss, val_loss = create_loss(config)

    if (config.train.val_period > 0 and start_epoch == 0
            and config.train.val_first):
        # validate the model from epoch 0
        validate(0, config, model, val_loss, val_loader, logger,
                 tensorboard_writer)

    for epoch, seed in enumerate(epoch_seeds[start_epoch:], start_epoch):
        epoch += 1

        np.random.seed(seed)
        train(epoch, config, model, optimizer, scheduler, train_loss,
              train_loader, logger, tensorboard_writer, tensorboard_writer2)

        if config.train.val_period > 0 and (epoch % config.train.val_period
                                            == 0):
            validate(epoch, config, model, val_loss, val_loader, logger,
                     tensorboard_writer)

        tensorboard_writer.flush()
        tensorboard_writer2.flush()

        if (epoch % config.train.checkpoint_period
                == 0) or (epoch == config.scheduler.epochs):
            checkpoint_config = {
                'epoch': epoch,
                'global_step': global_step,
                'config': config.as_dict(),
            }
            checkpointer.save(f'checkpoint_{epoch:05d}', **checkpoint_config)

    tensorboard_writer.close()
    tensorboard_writer2.close()