Exemplo n.º 1
0
class FitLoop(Loop):
    """This Loop iterates over the epochs to run the training

    Args:
        min_epochs: The minimum number of epochs
        max_epochs: The maximum number of epochs
        min_steps: The minimum number of steps
        max_steps: The maximum number of epoch

    .. note::
        If neither the minimum epochs nor steps are specified the minimum number of epochs is set to 1
        and if neither the maximum steps nor epochs are specified, the maximum epochs are set to 1000.
    """

    def __init__(
        self,
        min_epochs: Optional[int] = None,
        max_epochs: Optional[int] = None,
        min_steps: Optional[int] = None,
        max_steps: Optional[int] = None
    ):
        super().__init__()
        self.max_epochs = 1000 if (max_epochs is None and max_steps is None) else max_epochs
        self.min_epochs = 1 if (min_epochs is None and min_steps is None) else min_epochs
        self.epoch_loop = TrainingEpochLoop(min_steps, max_steps)

    @property
    def results(self) -> ResultCollection:
        return self.epoch_loop.results

    @property
    def current_epoch(self) -> int:
        """Return the current epoch"""
        return self.iteration_count

    @current_epoch.setter
    def current_epoch(self, value: int) -> None:
        """Setter for the current epoch"""
        self.iteration_count = value

    @property
    def global_step(self) -> int:
        """Returns the global step"""
        return self.epoch_loop.global_step

    @global_step.setter
    def global_step(self, value: int) -> None:
        """Sets the global step (forwards to epoch_loop)"""
        self.epoch_loop.global_step = value

    @property
    def total_batch_idx(self) -> int:
        """Returns the total number of batches already run (across all epochs)"""
        return self.epoch_loop.total_batch_idx

    @property
    def batch_idx(self) -> int:
        """Returns the number of batches already run within this epoch"""
        return self.epoch_loop.iteration_count

    @property
    def split_idx(self) -> int:
        """Returns the index of the current batch split (within the current batch) for bptt"""
        return self.epoch_loop.split_idx

    @property
    def min_steps(self) -> int:
        # TODO(@justusschock): Why aren't we using the attribute in this class?
        """Returns the minimum numnber of steps to run"""
        return self.epoch_loop.min_steps

    @property
    def max_steps(self) -> int:
        """Returns the maximum number of steps to run"""
        return self.epoch_loop.max_steps

    @max_steps.setter
    def max_steps(self, value: int) -> None:
        """Sets the maximum number of steps (forwards to epoch_loop)"""
        # TODO(@awaelchli): This setter is required by debugging connector (fast dev run), should be avoided
        self.epoch_loop.max_steps = value

    @property
    def running_loss(self) -> TensorRunningAccum:
        """Returns the running loss"""
        return self.epoch_loop.batch_loop.running_loss

    @property
    def _skip_backward(self) -> bool:
        """ Determines whether the loop will skip backward during automatic optimization. """
        return self.epoch_loop.batch_loop._skip_backward

    @_skip_backward.setter
    def _skip_backward(self, value: bool) -> None:
        """ Determines whether the loop will skip backward during automatic optimization. """
        self.epoch_loop.batch_loop._skip_backward = value

    @property
    def done(self) -> bool:
        """Evaluates when to leave the loop.

        Returns True if trainer.should_stop was set (e.g. by early stopping)
        or if the maximum number of steps or epochs is reached.
        """
        # TODO(@awaelchli): Move track steps inside training loop and move part of these condition inside training loop
        stop_steps = self.max_steps is not None and self.global_step >= self.max_steps
        stop_epochs = self.max_epochs is not None and self.current_epoch >= self.max_epochs

        should_stop = False
        if self.trainer.should_stop:
            # early stopping
            met_min_epochs = self.current_epoch >= self.min_epochs if self.min_epochs else True
            met_min_steps = self.global_step >= self.min_steps if self.min_steps else True
            if met_min_epochs and met_min_steps:
                should_stop = True
            else:
                log.info(
                    'Trainer was signaled to stop but required minimum epochs'
                    f' ({self.min_epochs}) or minimum steps ({self.min_steps}) has'
                    ' not been met. Training will continue...'
                )
        self.trainer.should_stop = should_stop

        return stop_steps or should_stop or stop_epochs

    @property
    def skip(self) -> bool:
        """Whether we should skip the training and immediately return from the call to :meth:`run`."""
        return self.done or self.trainer.num_training_batches == 0

    def connect(self, trainer: 'pl.Trainer', *args: Any, **kwargs: Any) -> None:
        """Connects the loop with necessary arguments like the trainer"""
        super().connect(trainer, *args, **kwargs)
        self.epoch_loop.connect(trainer)

    def reset(self) -> None:
        """Resets the internal state of this loop"""

    def on_run_start(self) -> None:
        """Calls the ``on_train_start`` hook."""
        self.results.to(device=self.trainer.lightning_module.device)
        self.trainer.call_hook("on_train_start")

    def on_advance_start(self) -> None:
        """Prepares the dataloader for training and calls the hooks ``on_epoch_start`` and ``on_train_epoch_start``"""
        model = self.trainer.lightning_module

        # reset train dataloader
        if self.current_epoch != 0 and self.trainer.reload_dataloaders_every_epoch:
            self.trainer.reset_train_dataloader(model)

        # TODO: specify the possible exception
        with suppress(Exception):
            # set seed for distributed sampler (enables shuffling for each epoch)
            self.trainer.train_dataloader.sampler.set_epoch(self.current_epoch)

        # changing gradient according accumulation_scheduler
        self.trainer.accumulation_scheduler.on_train_epoch_start(self.trainer, self.trainer.lightning_module)

        # stores accumulated grad fractions per batch
        self.epoch_loop.batch_loop.accumulated_loss = TensorRunningAccum(
            window_length=self.trainer.accumulate_grad_batches
        )

    def advance(self) -> None:
        """Runs one whole epoch."""
        train_dataloader = self.trainer.accelerator.process_dataloader(self.trainer.train_dataloader)
        train_dataloader = self.trainer.data_connector.get_profiled_train_dataloader(train_dataloader)

        with self.trainer.profiler.profile("run_training_epoch"):
            # run train epoch
            epoch_output = self.epoch_loop.run(train_dataloader)

            if epoch_output is None:
                return

            # the global step is manually decreased here due to backwards compatibility with existing loggers
            # as they expect that the same step is used when logging epoch end metrics even when the batch loop has
            # finished. this means the attribute does not exactly track the number of optimizer steps applied.
            # TODO(@carmocca): deprecate and rename so users don't get confused
            self.global_step -= 1
            # log epoch metrics
            self.trainer.logger_connector.update_train_epoch_metrics()
            self.global_step += 1

    def on_advance_end(self) -> None:
        """Updates the LR schedulers and does some internal bookkeeping"""
        if self.epoch_loop.batches_seen == 0:
            return

        self.epoch_loop.update_lr_schedulers('epoch', update_plateau_schedulers=True)

        did_train_only = self.trainer.disable_validation or self.trainer.evaluation_loop.skip
        if did_train_only:
            self.global_step -= 1
            self._check_checkpoint_callback(True)
            self.global_step += 1

    def on_run_end(self) -> None:
        """Runs teardown logic and calls the ``on_train_end`` hook"""
        # NOTE: the iteration_count/current_epoch is already incremented
        # Lightning today does not increment the current epoch at the last epoch run in Trainer.fit
        # To simulate that current behavior, we decrement here.
        # TODO: must be fixed by https://github.com/PyTorchLightning/pytorch-lightning/issues/5007
        self.current_epoch -= 1

        # trigger checkpoint check. need to temporarily decrease the global step to avoid saving duplicates
        # when a checkpoint was saved at the last step
        self.epoch_loop.global_step -= 1
        # TODO: see discussion/rework https://github.com/PyTorchLightning/pytorch-lightning/issues/7406
        self._check_checkpoint_callback(should_update=True, is_last=True)
        self.epoch_loop.global_step += 1

        # hook
        self.trainer.call_hook("on_train_end")

        # todo: TPU 8 cores hangs in flush with TensorBoard. Might do for all loggers.
        # It might be related to xla tensors blocked when moving the cpu
        # kill loggers
        if self.trainer.logger is not None:
            self.trainer.logger.finalize("success")

        # summarize profile results
        self.trainer.profiler.describe()

        # give accelerators a chance to finish
        self.trainer.accelerator.on_train_end()

        # reset bookkeeping
        self.trainer._running_stage = None

    def should_accumulate(self) -> bool:
        """Whether the gradients should be accumulated"""
        return self.epoch_loop.batch_loop.should_accumulate()

    def _check_checkpoint_callback(self, should_update: bool, is_last: bool = False):
        """Checks if checkpointing needs to be done"""
        # TODO: bake this logic into the ModelCheckpoint callback
        if should_update and self.trainer.checkpoint_connector.has_trained:
            callbacks = self.trainer.checkpoint_callbacks

            if is_last and any(cb.save_last and cb.verbose for cb in callbacks):
                rank_zero_info("Saving latest checkpoint...")

            model = self.trainer.lightning_module

            for cb in callbacks:
                cb.on_validation_end(self.trainer, model)
Exemplo n.º 2
0
class FitLoop(Loop[None]):
    """This Loop iterates over the epochs to run the training.

    Args:
        min_epochs: The minimum number of epochs
        max_epochs: The maximum number of epochs, can be set -1 to turn this limit off
    """
    def __init__(
        self,
        min_epochs: int = 0,
        max_epochs: int = 1000,
    ) -> None:
        super().__init__()
        if max_epochs < -1:
            # Allow max_epochs to be zero, since this will be handled by fit_loop.done
            raise MisconfigurationException(
                f"`max_epochs` must be a non-negative integer or -1. You passed in {max_epochs}."
            )

        self.max_epochs = max_epochs
        self.min_epochs = min_epochs
        self.epoch_loop = TrainingEpochLoop()
        self.epoch_progress = Progress()

        self._is_fresh_start_epoch: bool = True
        self._outputs: _EPOCH_OUTPUTS_TYPE = []
        self._data_fetcher: Optional[AbstractDataFetcher] = None

    @property
    def total_batch_idx(self) -> int:
        """Returns the current batch index (across epochs)"""
        return self.epoch_loop.total_batch_idx

    @property
    def batch_idx(self) -> int:
        """Returns the current batch index (within this epoch)"""
        return self.epoch_loop.batch_idx

    @property
    def split_idx(self) -> int:
        """Returns the index of the current batch split (within the current batch) for bptt."""
        return self.epoch_loop.batch_loop.split_idx

    @property
    def min_steps(self) -> Optional[int]:
        # TODO(@justusschock): Why aren't we using the attribute in this class?
        """Returns the minimum number of steps to run."""
        return self.epoch_loop.min_steps

    @min_steps.setter
    def min_steps(self, value: Optional[int]) -> None:
        """Sets the minimum number of steps (forwards to epoch_loop)"""
        # TODO(@awaelchli): This setter is required by debugging connector (fast dev run), should be avoided
        self.epoch_loop.min_steps = value

    @property
    def max_steps(self) -> int:
        """Returns the maximum number of steps to run."""
        return self.epoch_loop.max_steps

    @max_steps.setter
    def max_steps(self, value: int) -> None:
        """Sets the maximum number of steps (forwards to epoch_loop)"""
        # TODO(@awaelchli): This setter is required by debugging connector (fast dev run), should be avoided
        if value is None:
            rank_zero_deprecation(
                "Setting `max_steps = None` is deprecated in v1.5 and will no longer be supported in v1.7."
                " Use `max_steps = -1` instead.")
            value = -1
        elif value < -1:
            raise MisconfigurationException(
                f"`max_steps` must be a non-negative integer or -1 (infinite steps). You passed in {value}."
            )
        self.epoch_loop.max_steps = value

    @property
    def running_loss(self) -> TensorRunningAccum:
        """Returns the running loss."""
        return self.epoch_loop.batch_loop.running_loss

    @Loop.restarting.setter
    def restarting(self, restarting: bool) -> None:
        # if the last epoch completely finished, we are not actually restarting, we can check this to see if all
        # current values are equal
        values = (
            self.epoch_progress.current.ready,
            self.epoch_progress.current.started,
            self.epoch_progress.current.processed,
        )
        finished_before_on_train_end = any(
            v != self.epoch_progress.current.completed for v in values)
        if finished_before_on_train_end:
            self.epoch_progress.current.completed = self.epoch_progress.current.processed
        restarting &= finished_before_on_train_end
        Loop.restarting.fset(self, restarting)  # call the parent setter

    @property
    def prefetch_batches(self) -> int:
        is_unsized = self.trainer.num_training_batches == float("inf")
        inter_batch_parallelism = os.getenv("PL_INTER_BATCH_PARALLELISM",
                                            "0") == "1"
        return 1 if is_unsized or inter_batch_parallelism else 0

    @property
    def _skip_backward(self) -> bool:
        """Determines whether the loop will skip backward during automatic optimization."""
        return self.epoch_loop.batch_loop.optimizer_loop._skip_backward

    @_skip_backward.setter
    def _skip_backward(self, value: bool) -> None:
        """Determines whether the loop will skip backward during automatic optimization."""
        self.epoch_loop.batch_loop.optimizer_loop._skip_backward = value

    @property
    def _results(self) -> _ResultCollection:
        if self.trainer.training:
            return self.epoch_loop._results
        if self.trainer.validating:
            return self.epoch_loop.val_loop._results
        raise RuntimeError(
            "`FitLoop._results` property isn't defined. Accessed outside of scope"
        )

    @property
    def done(self) -> bool:
        """Evaluates when to leave the loop."""
        # TODO(@awaelchli): Move track steps inside training loop and move part of these condition inside training loop
        stop_steps = _is_max_limit_reached(self.epoch_loop.global_step,
                                           self.max_steps)
        # `processed` is increased before `on_train_epoch_end`, the hook where checkpoints are typically saved.
        # we use it here because the checkpoint data won't have `completed` increased yet
        stop_epochs = _is_max_limit_reached(
            self.epoch_progress.current.processed, self.max_epochs)

        should_stop = False
        if self.trainer.should_stop:
            # early stopping
            met_min_epochs = self.epoch_progress.current.processed >= self.min_epochs if self.min_epochs else True
            met_min_steps = self.epoch_loop.global_step >= self.min_steps if self.min_steps else True
            if met_min_epochs and met_min_steps:
                should_stop = True
            else:
                log.info(
                    "Trainer was signaled to stop but required minimum epochs"
                    f" ({self.min_epochs}) or minimum steps ({self.min_steps}) has"
                    " not been met. Training will continue...")
        self.trainer.should_stop = should_stop

        return stop_steps or should_stop or stop_epochs or self.trainer.num_training_batches == 0

    @property
    def skip(self) -> bool:
        """Whether we should skip the training and immediately return from the call to :meth:`run`."""
        # since `trainer.num_training_batches` depends on the `train_dataloader` but that won't be called
        # until `on_run_start`, we use `limit_train_batches` instead
        return self.done or self.trainer.limit_train_batches == 0

    def connect(
            self,
            epoch_loop: TrainingEpochLoop) -> None:  # type: ignore[override]
        """Connects a training epoch loop to this fit loop."""
        self.epoch_loop = epoch_loop

    def reset(self) -> None:
        """Resets the internal state of this loop."""
        if self.restarting:
            self.epoch_progress.reset_on_restart()

    def on_run_start(self) -> None:  # type: ignore[override]
        """Calls the ``on_train_start`` hook."""
        # reset train dataloader and val dataloader
        self.trainer.reset_train_val_dataloaders(self.trainer.lightning_module)

        data_fetcher_cls = _select_data_fetcher(self.trainer)
        self._data_fetcher = data_fetcher_cls(
            prefetch_batches=self.prefetch_batches)

        self._is_fresh_start_epoch = True
        self._results.to(device=self.trainer.lightning_module.device)

        self.trainer._call_callback_hooks("on_train_start")
        self.trainer._call_lightning_module_hook("on_train_start")
        self.trainer._call_strategy_hook("on_train_start")

    def on_advance_start(self) -> None:  # type: ignore[override]
        """Prepares the dataloader for training and calls the hooks ``on_epoch_start`` and
        ``on_train_epoch_start``"""
        model = self.trainer.lightning_module

        # reset train dataloader
        if not self._is_fresh_start_epoch and self.trainer._data_connector._should_reload_train_dl:
            log.detail(
                f"{self.__class__.__name__}: resetting train dataloader")
            self.trainer.reset_train_dataloader(model)
        self._is_fresh_start_epoch = False

        # reset outputs here instead of in `reset` as they are not accumulated between epochs
        self._outputs = []

        if self.trainer.train_dataloader is not None and callable(
                getattr(self.trainer.train_dataloader.sampler, "set_epoch",
                        None)):
            # set seed for distributed sampler (enables shuffling for each epoch)
            self.trainer.train_dataloader.sampler.set_epoch(
                self.epoch_progress.current.processed)

        # changing gradient according accumulation_scheduler
        self.trainer.accumulation_scheduler.on_train_epoch_start(
            self.trainer, self.trainer.lightning_module)

        # stores accumulated grad fractions per batch
        self.epoch_loop.batch_loop.accumulated_loss.reset(
            window_length=self.trainer.accumulate_grad_batches)

        self.epoch_progress.increment_ready()

        self.trainer._logger_connector.on_epoch_start()

        self.trainer._call_callback_hooks("on_epoch_start")
        self.trainer._call_lightning_module_hook("on_epoch_start")

        self.trainer._call_callback_hooks("on_train_epoch_start")
        self.trainer._call_lightning_module_hook("on_train_epoch_start")

        self.epoch_progress.increment_started()

    def advance(self) -> None:  # type: ignore[override]
        """Runs one whole epoch."""
        log.detail(f"{self.__class__.__name__}: advancing loop")
        assert self.trainer.train_dataloader is not None
        dataloader = self.trainer.train_dataloader
        assert self._data_fetcher is not None
        self._data_fetcher.setup(dataloader,
                                 batch_to_device=partial(
                                     self.trainer._call_strategy_hook,
                                     "batch_to_device",
                                     dataloader_idx=0))
        with self.trainer.profiler.profile("run_training_epoch"):
            self._outputs = self.epoch_loop.run(self._data_fetcher)

    def on_advance_end(self) -> None:
        # inform logger the batch loop has finished
        self.trainer._logger_connector.epoch_end_reached()

        # get the model and call model.training_epoch_end
        model = self.trainer.lightning_module
        if is_overridden("training_epoch_end", model) and self._outputs:
            epoch_end_outputs = self.epoch_loop._prepare_outputs_training_epoch_end(
                self._outputs,
                lightning_module=model,
                num_optimizers=len(self.trainer.optimizers),
            )
            # run lightning module hook training_epoch_end
            # refresh the result for custom logging at the epoch level
            epoch_end_outputs = self.trainer._call_lightning_module_hook(
                "training_epoch_end", epoch_end_outputs)
            if epoch_end_outputs is not None:
                raise MisconfigurationException(
                    "`training_epoch_end` expects a return of None. "
                    "HINT: remove the return statement in `training_epoch_end`."
                )
        # free memory
        self._outputs = []

        self.epoch_progress.increment_processed()

        # call train epoch end hooks
        self.trainer._call_callback_hooks("on_train_epoch_end")
        self.trainer._call_lightning_module_hook("on_train_epoch_end")

        self.trainer._call_callback_hooks("on_epoch_end")
        self.trainer._call_lightning_module_hook("on_epoch_end")

        self.trainer._logger_connector.on_epoch_end()

        if self.epoch_loop._num_ready_batches_reached():
            self.epoch_loop.update_lr_schedulers(
                "epoch", update_plateau_schedulers=True)

        self.epoch_progress.increment_completed()

        # we manually decrease here because loggers expect that the same step is used when logging epoch-end metrics
        # even when the batch loop has finished
        self.epoch_loop._batches_that_stepped -= 1
        # log epoch metrics
        self.trainer._logger_connector.update_train_epoch_metrics()
        self.epoch_loop._batches_that_stepped += 1

        # if fault tolerant is enabled and process has been notified, exit.
        self.trainer._exit_gracefully_on_signal()

    def on_run_end(self) -> None:
        """Calls the ``on_train_end`` hook."""
        log.detail(f"{self.__class__.__name__}: train run ended")

        # hook
        self.trainer._call_callback_hooks("on_train_end")
        self.trainer._call_lightning_module_hook("on_train_end")
        self.trainer._call_strategy_hook("on_train_end")

    def teardown(self) -> None:
        if self._data_fetcher is not None:
            self._data_fetcher.teardown()
            self._data_fetcher = None
        self.epoch_loop.teardown()

    def _should_accumulate(self) -> bool:
        """Whether the gradients should be accumulated."""
        return self.epoch_loop._should_accumulate()
Exemplo n.º 3
0
class FitLoop(Loop):
    """This Loop iterates over the epochs to run the training.

    Args:
        min_epochs: The minimum number of epochs
        max_epochs: The maximum number of epochs, can be set -1 to turn this limit off
    """
    def __init__(
        self,
        min_epochs: Optional[int] = 1,
        max_epochs: int = 1000,
    ) -> None:
        super().__init__()
        if max_epochs < -1:
            # Allow max_epochs to be zero, since this will be handled by fit_loop.done
            raise MisconfigurationException(
                f"`max_epochs` must be a non-negative integer or -1. You passed in {max_epochs}."
            )

        self.max_epochs = max_epochs
        self.min_epochs = min_epochs
        self.epoch_loop = TrainingEpochLoop()
        self.epoch_progress = Progress()
        self._is_fresh_start_epoch: bool = True

    @property
    def current_epoch(self) -> int:
        """Return the current epoch."""
        return self.epoch_progress.current.completed

    @current_epoch.setter
    def current_epoch(self, value: int) -> None:
        """Setter for the current epoch."""
        self.epoch_progress.current.completed = value

    @property
    def global_step(self) -> int:
        """Returns the global step."""
        return self.epoch_loop.global_step

    @global_step.setter
    def global_step(self, value: int) -> None:
        """Sets the global step (forwards to epoch_loop)"""
        self.epoch_loop.global_step = value

    @property
    def total_batch_idx(self) -> int:
        """Returns the current batch index (across epochs)"""
        return self.epoch_loop.total_batch_idx

    @property
    def batch_idx(self) -> int:
        """Returns the current batch index (within this epoch)"""
        return self.epoch_loop.batch_idx

    @property
    def split_idx(self) -> Optional[int]:
        """Returns the index of the current batch split (within the current batch) for bptt."""
        return self.epoch_loop.batch_loop.split_idx

    @property
    def min_steps(self) -> Optional[int]:
        # TODO(@justusschock): Why aren't we using the attribute in this class?
        """Returns the minimum numnber of steps to run."""
        return self.epoch_loop.min_steps

    @min_steps.setter
    def min_steps(self, value: Optional[int]) -> None:
        """Sets the minimum number of steps (forwards to epoch_loop)"""
        # TODO(@awaelchli): This setter is required by debugging connector (fast dev run), should be avoided
        self.epoch_loop.min_steps = value

    @property
    def max_steps(self) -> int:
        """Returns the maximum number of steps to run."""
        return self.epoch_loop.max_steps

    @max_steps.setter
    def max_steps(self, value: int) -> None:
        """Sets the maximum number of steps (forwards to epoch_loop)"""
        # TODO(@awaelchli): This setter is required by debugging connector (fast dev run), should be avoided
        if value is None:
            rank_zero_deprecation(
                "Setting `max_steps = None` is deprecated in v1.5 and will no longer be supported in v1.7."
                " Use `max_steps = -1` instead.")
            value = -1
        elif value < -1:
            raise MisconfigurationException(
                f"`max_steps` must be a non-negative integer or -1 (infinite steps). You passed in {value}."
            )
        self.epoch_loop.max_steps = value

    @property
    def running_loss(self) -> TensorRunningAccum:
        """Returns the running loss."""
        return self.epoch_loop.batch_loop.running_loss

    @property
    def _skip_backward(self) -> bool:
        """Determines whether the loop will skip backward during automatic optimization."""
        return self.epoch_loop.batch_loop.optimizer_loop._skip_backward

    @_skip_backward.setter
    def _skip_backward(self, value: bool) -> None:
        """Determines whether the loop will skip backward during automatic optimization."""
        self.epoch_loop.batch_loop.optimizer_loop._skip_backward = value

    @property
    def _results(self) -> _ResultCollection:
        if self.trainer.training:
            return self.epoch_loop._results
        if self.trainer.validating:
            return self.epoch_loop.val_loop._results
        raise RuntimeError(
            "`FitLoop._results` property isn't defined. Accessed outside of scope"
        )

    @property
    def done(self) -> bool:
        """Evaluates when to leave the loop.

        Returns True if trainer.should_stop was set (e.g. by early stopping) or if the maximum number of steps or epochs
        is reached.
        """
        # TODO(@awaelchli): Move track steps inside training loop and move part of these condition inside training loop
        stop_steps = _is_max_limit_reached(self.global_step, self.max_steps)
        stop_epochs = _is_max_limit_reached(self.current_epoch,
                                            self.max_epochs)

        should_stop = False
        if self.trainer.should_stop:
            # early stopping
            met_min_epochs = self.current_epoch >= self.min_epochs if self.min_epochs else True
            met_min_steps = self.global_step >= self.min_steps if self.min_steps else True
            if met_min_epochs and met_min_steps:
                should_stop = True
            else:
                log.info(
                    "Trainer was signaled to stop but required minimum epochs"
                    f" ({self.min_epochs}) or minimum steps ({self.min_steps}) has"
                    " not been met. Training will continue...")
        self.trainer.should_stop = should_stop

        return stop_steps or should_stop or stop_epochs or self.trainer.num_training_batches == 0

    @property
    def skip(self) -> bool:
        """Whether we should skip the training and immediately return from the call to :meth:`run`."""
        # since `trainer.num_training_batches` depends on the `train_dataloader` but that won't be called
        # until `on_run_start`, we use `limit_train_batches` instead
        return self.done or self.trainer.limit_train_batches == 0

    def connect(
            self,
            epoch_loop: TrainingEpochLoop) -> None:  # type: ignore[override]
        """Connects a training epoch loop to this fit loop."""
        self.epoch_loop = epoch_loop

    def reset(self) -> None:
        """Resets the internal state of this loop."""
        if self.restarting:
            self.epoch_progress.reset_on_restart()

    def on_run_start(self) -> None:  # type: ignore[override]
        """Calls the ``on_train_start`` hook."""
        # reset train dataloader and val dataloader
        self.trainer.reset_train_val_dataloaders(self.trainer.lightning_module)
        self._is_fresh_start_epoch = True
        self._results.to(device=self.trainer.lightning_module.device)
        self.trainer._call_callback_hooks("on_train_start")
        self.trainer._call_lightning_module_hook("on_train_start")
        self.trainer._call_strategy_hook("on_train_start")

    def on_advance_start(self) -> None:  # type: ignore[override]
        """Prepares the dataloader for training and calls the hooks ``on_epoch_start`` and
        ``on_train_epoch_start``"""
        model = self.trainer.lightning_module

        # reset train dataloader
        if not self._is_fresh_start_epoch and self.trainer._should_reload_dl_epoch:
            self.trainer.reset_train_dataloader(model)
        self._is_fresh_start_epoch = False

        if self.trainer.train_dataloader is not None and callable(
                getattr(self.trainer.train_dataloader.sampler, "set_epoch",
                        None)):
            # set seed for distributed sampler (enables shuffling for each epoch)
            self.trainer.train_dataloader.sampler.set_epoch(self.current_epoch)

        # changing gradient according accumulation_scheduler
        self.trainer.accumulation_scheduler.on_train_epoch_start(
            self.trainer, self.trainer.lightning_module)

        # stores accumulated grad fractions per batch
        self.epoch_loop.batch_loop.accumulated_loss.reset(
            window_length=self.trainer.accumulate_grad_batches)

        self.epoch_progress.increment_ready()

    def advance(self) -> None:  # type: ignore[override]
        """Runs one whole epoch."""
        dataloader = self.trainer.strategy.process_dataloader(
            self.trainer.train_dataloader)
        data_fetcher = self.trainer._data_connector.get_profiled_dataloader(
            dataloader)

        with self.trainer.profiler.profile("run_training_epoch"):
            self.epoch_loop.run(data_fetcher)

            # the global step is manually decreased here due to backwards compatibility with existing loggers
            # as they expect that the same step is used when logging epoch end metrics even when the batch loop has
            # finished. this means the attribute does not exactly track the number of optimizer steps applied.
            # TODO(@carmocca): deprecate and rename so users don't get confused
            self.global_step -= 1
            # log epoch metrics
            self.trainer.logger_connector.update_train_epoch_metrics()
            self.global_step += 1

    def on_advance_end(self) -> None:
        self.epoch_progress.increment_completed()

    def on_run_end(self) -> None:
        """Calls the ``on_train_end`` hook."""
        # NOTE: the current_epoch is already incremented
        # Lightning today does not increment the current epoch at the last epoch run in Trainer.fit
        # To simulate that current behavior, we decrement here.
        # TODO: must be fixed by https://github.com/PyTorchLightning/pytorch-lightning/issues/5007
        self.current_epoch = max(self.current_epoch - 1, 0)

        # hook
        self.trainer._call_callback_hooks("on_train_end")
        self.trainer._call_lightning_module_hook("on_train_end")
        self.trainer._call_strategy_hook("on_train_end")

        # give accelerators a chance to finish
        self.trainer.strategy.on_train_end()

    def teardown(self) -> None:
        self.epoch_loop.teardown()

    def _should_accumulate(self) -> bool:
        """Whether the gradients should be accumulated."""
        return self.epoch_loop._should_accumulate()