def __init__(self):
        super().__init__()

        num_classes = 9

        weight = torch.tensor([
            0.01030928,
            0.00552486,
            0.00344828,
            0.01388889,
            0.02222222,
            0.01204819,
            0.02272727,
            0.00307692,
            0.00055249,
        ])

        self.criterion = nn.CrossEntropyLoss(weight=weight)
        #         self.criterion = nn.CrossEntropyLoss()
        self.metrics = {
            "accuracy": Accuracy(),
            "recall_macro": Recall(num_classes=num_classes, average="macro"),
            "precision_macro": Precision(num_classes=num_classes,
                                         average="macro"),
        }

        self.classifier = nn.Sequential(
            nn.Linear(768, 256),
            nn.Dropout(0.5),
            nn.ReLU(),
            nn.Linear(256, 128),
            nn.Dropout(0.5),
            nn.ReLU(),
            nn.Linear(128, num_classes),
        )
Exemplo n.º 2
0
    def __init__(self, hparams):
        super(MaskRefineModel, self).__init__()
        self.save_hyperparameters()

        # Hyperparameters
        self.hparams = hparams
        self.lr = hparams.lr

        # Modules
        self.net = load_network(hparams)
        self.criterion = TverskyLoss(hparams.tversky_alpha,
                                     hparams.tversky_beta)

        # Metrics
        self.train_metrics = MetricCollection([Precision(), Recall(), F1(2)])
        self.val_metrics = MetricCollection([Precision(), Recall(), F1(2)])
Exemplo n.º 3
0
    def __init__(self,MODEL,TRAIN_DATA,TRAIN_CODES,DEV_DATA,DEV_CODES,TEST_DATA,TEST_CODES,HIDDEN_UNIT1,BATCH_SIZE,LR,EPS,EPOCHS,FREEZE_BERT=False):

        super(CorefClassifier, self).__init__()  
        #self.save_hyperparameters()
        
        self.BEST_THRESHOLD = 0

        self.train_data  = TRAIN_DATA
        self.train_codes = TRAIN_CODES

        self.dev_data   = DEV_DATA
        self.dev_codes  = DEV_CODES

        self.test_data  = TEST_DATA
        self.test_codes = TEST_CODES

        self.model = AutoModel.from_pretrained(MODEL)
        self.hidden_unit1 = HIDDEN_UNIT1
        
        if self.hidden_unit1:
            self.hidden_layer1 = nn.Linear(768, self.hidden_unit1)
            self.hidden_layer2 = nn.Linear(self.hidden_unit1, 1)
        else:
            self.hidden_layer1 = nn.Linear(768, 1)

        self.lossfn = nn.BCELoss()
        self.batch_size = BATCH_SIZE
        self.lr  = LR
        self.eps = EPS
        self.epochs = EPOCHS
        
        if FREEZE_BERT:
            for param in self.model.parameters():
                param.requires_grad = False
        
        #Metrics
        self.valid_metrics = MetricCollection([Accuracy(),
                                               Precision(num_classes=1, average='macro'),
                                               Recall(num_classes=1, average='macro'),
                                               F1(num_classes=1, average='macro')
                                              ])
        
        self.test_metrics = MetricCollection([Accuracy(),
                                               Precision(num_classes=1, average='macro'),
                                               Recall(num_classes=1, average='macro'),
                                               F1(num_classes=1, average='macro')
                                              ])
Exemplo n.º 4
0
    def __init__(self, hparams):
        super(EdgeCompleteModel, self).__init__()
        self.save_hyperparameters()

        # Hyperparameters
        self.hparams = hparams
        self.lr = hparams.lr

        # Modules
        self.mask_refine_net = MaskRefineNet(hparams.mask_refine_weights)
        self.mask_refine_net.freeze()
        self.net = load_network(hparams)
        self.tv_loss = TverskyLoss(hparams.tversky_alpha, hparams.tversky_beta)

        # Metrics
        self.train_metrics = MetricCollection([Precision(), Recall(), F1(2)])
        self.val_metrics = MetricCollection([Precision(), Recall(), F1(2)])
Exemplo n.º 5
0
    def __init__(self, **kwargs):
        super().__init__(**kwargs)

        self.model = nn.Module()
        self.criterion = F.cross_entropy
        self.metrics = nn.ModuleDict({
            'accuracy': Accuracy(),
            'precision': Precision(),
            'recall': Recall(),
        })
Exemplo n.º 6
0
    def __init__(self, params):
        super().__init__()

        self.hparams = params
        self.lr = self.hparams.lr
        self.save_hyperparameters()
        self.model = Net(name=self.hparams.model)
        self.criterion = torch.nn.BCEWithLogitsLoss()

        self.train_accuracy = Accuracy(subset_accuracy=True)
        self.val_accuracy = Accuracy(subset_accuracy=True)
        self.train_recall = Recall()
        self.val_recall = Recall()

        self.train_df = pd.read_csv(
            f'data_preprocessing/train_fold_{self.hparams.fold}.csv')
        self.valid_df = pd.read_csv(
            f'data_preprocessing/valid_fold_{self.hparams.fold}.csv')

        self.train_transforms = A.Compose([
            A.Rotate(),
            A.HorizontalFlip(p=0.5),
            A.VerticalFlip(p=0.5),
            A.Resize(width=self.hparams.img_size,
                     height=self.hparams.img_size),
            A.Normalize(),
            ToTensorV2(),
        ])

        self.valid_transforms = A.Compose([
            A.Resize(width=self.hparams.img_size,
                     height=self.hparams.img_size),
            A.Normalize(),
            ToTensorV2(),
        ])

        self.train_dataset = CellDataset(data_dir=self.hparams.data_dir,
                                         csv_file=self.train_df,
                                         transform=self.train_transforms)
        self.val_dataset = CellDataset(data_dir=self.hparams.data_dir,
                                       csv_file=self.valid_df,
                                       transform=self.valid_transforms)
Exemplo n.º 7
0
 def __init__(self):
     super().__init__()
     self.cnn = ConvNet()
     self.criterion = FocalLoss(alpha=0.5, gamma=2.0, reduction='mean')
     self.config = load_classifier_config()
     self.learning_rate = self.config['training']['learning_rates']
     self.batch_size = self.config['training']['batch_sizes']
     self.accuracy = Accuracy(num_classes=2)
     self.f1 = F1()
     self.recall = Recall()
     self.precision = Precision()
Exemplo n.º 8
0
    def validation_epoch_end(self, outputs):
        avg_loss = torch.stack([x['val_loss'] for x in outputs]).mean()
        gap_epoch = self.gap[self.val_mode].compute_final()
        acc_metric = Accuracy()
        recall_metric = Recall()
        precision_metric = Precision()
        val_acc = acc_metric.forward(
            pred=torch.stack([batch['preds'] for batch in outputs]),
            target=torch.stack([batch['targets'] for batch in outputs]))
        val_recall = recall_metric.forward(
            pred=torch.stack([batch['preds'] for batch in outputs]),
            target=torch.stack([batch['targets'] for batch in outputs]))
        val_precision = precision_metric.forward(
            pred=torch.stack([batch['preds'] for batch in outputs]),
            target=torch.stack([batch['targets'] for batch in outputs]))
        val_logs = {
            'val_loss': avg_loss,
            'val_gap': gap_epoch,
            'val_acc': val_acc,
            'val_recall': val_recall,
            'val_precision': val_precision
        }
        # reset metrics every epoch
        self.gap[self.val_mode].reset_stats()

        return {
            'val_loss': avg_loss,
            'val_acc': val_acc,
            'val_recall': val_recall,
            'val_precision': val_precision,
            'log': val_logs,
            'progress_bar': {
                'val_acc': val_acc,
                'gap': gap_epoch
            }
        }
Exemplo n.º 9
0
    def __init__(self):
        super().__init__()

        num_classes = len(emotion_dict)
        num_classes = 9

        weight = torch.tensor([
            0.01030928,
            0.00552486,
            0.00344828,
            0.01388889,
            0.02222222,
            0.01204819,
            0.02272727,
            0.00307692,
            0.00055249,
        ])

        rnn_hidden_size = 256

        self.rnn = nn.GRU(768,
                          rnn_hidden_size,
                          2,
                          batch_first=True,
                          bidirectional=False,
                          dropout=0.3)

        self.criterion = nn.CrossEntropyLoss(weight=weight)
        #         self.criterion = nn.CrossEntropyLoss()
        self.metrics = {
            "accuracy": Accuracy(),
            "recall_macro": Recall(num_classes=num_classes, average="macro"),
            "precision_macro": Precision(num_classes=num_classes,
                                         average="macro"),
        }

        self.classifier = nn.Sequential(
            nn.ReLU(),
            nn.Linear(rnn_hidden_size * 1, 128),
            nn.Dropout(0.3),
            nn.ReLU(),
            nn.Linear(128, 64),
            nn.Dropout(0.3),
            nn.ReLU(),
            nn.Linear(64, num_classes),
        )
Exemplo n.º 10
0
def test_v1_5_metric_precision_recall():
    AveragePrecision.__init__.warned = False
    with pytest.deprecated_call(match='It will be removed in v1.5.0'):
        AveragePrecision()

    Precision.__init__.warned = False
    with pytest.deprecated_call(match='It will be removed in v1.5.0'):
        Precision()

    Recall.__init__.warned = False
    with pytest.deprecated_call(match='It will be removed in v1.5.0'):
        Recall()

    PrecisionRecallCurve.__init__.warned = False
    with pytest.deprecated_call(match='It will be removed in v1.5.0'):
        PrecisionRecallCurve()

    pred = torch.tensor([0, 1, 2, 3])
    target = torch.tensor([0, 1, 1, 1])
    average_precision.warned = False
    with pytest.deprecated_call(match='It will be removed in v1.5.0'):
        assert average_precision(pred, target) == torch.tensor(1.)

    precision.warned = False
    with pytest.deprecated_call(match='It will be removed in v1.5.0'):
        assert precision(pred, target) == torch.tensor(0.5)

    recall.warned = False
    with pytest.deprecated_call(match='It will be removed in v1.5.0'):
        assert recall(pred, target) == torch.tensor(0.5)

    precision_recall.warned = False
    with pytest.deprecated_call(match='It will be removed in v1.5.0'):
        prec, rc = precision_recall(pred, target)
        assert prec == torch.tensor(0.5)
        assert rc == torch.tensor(0.5)

    precision_recall_curve.warned = False
    with pytest.deprecated_call(match='It will be removed in v1.5.0'):
        prec, rc, thrs = precision_recall_curve(pred, target)
        assert torch.equal(prec, torch.tensor([1., 1., 1., 1.]))
        assert torch.allclose(rc,
                              torch.tensor([1., 0.6667, 0.3333, 0.]),
                              atol=1e-4)
        assert torch.equal(thrs, torch.tensor([1, 2, 3]))
    def __init__(self, num_classes):
        super().__init__()

        self.criterion = nn.CrossEntropyLoss()
        self.metrics = {
            "accuracy": Accuracy(),
            "recall_macro": Recall(num_classes=num_classes, average="macro"),
            "precision_macro": Precision(num_classes=num_classes,
                                         average="macro"),
        }

        self.model = models.resnet50(pretrained=True)

        ## Only the last layer is trained
        # for p in self.model.parameters():
        #     p.requires_grad = False

        self.num_ftrs = self.model.fc.in_features
        self.num_classes = num_classes
        self.model.fc = nn.Linear(self.num_ftrs, self.num_classes)
Exemplo n.º 12
0
    def __init__(self, hparams:dict):
        super().__init__()
        # self.model = models.resnet50(pretrained=True)
        self.model = models.wide_resnet50_2(pretrained=True)
        # self.model = models.densenet201(pretrained=True)
        self.model.fc = torch.nn.Linear(self.model.fc.in_features, 2)
        # self.model.classifier = torch.nn.Linear(self.model.classifier.in_features, 2)
        self.criterion = torch.nn.CrossEntropyLoss()
        # self.softmax = torch.nn.Softmax()
        
        # hyper param setting
        self.hparmas = hparams
        self.init_lr = hparams['optimizer_lr']

        print(hparams)
        
        self.accuracy = Accuracy()
        self.prec = Precision(num_classes=1, is_multiclass=False)
        self.rc = Recall(num_classes=1, is_multiclass=False)
        self.f1 = F1(num_classes=1, multilabel=False)
        # self.confmat = ConfusionMatrix(num_classes=1)

        self.preds = []
        self.gts = []
Exemplo n.º 13
0
    def __init__(self,
                 *,
                 d_model,
                 hidden_dim=2048,
                 num_heads,
                 dropout,
                 num_layers,
                 activation='relu',
                 kernel_size,
                 num_emb,
                 emb_dim,
                 learning_rate):
        super().__init__()

        encoder_layer = nn.TransformerEncoderLayer(d_model,
                                                   num_heads,
                                                   dim_feedforward=hidden_dim,
                                                   dropout=dropout,
                                                   activation=activation)
        self.dataset = DataModule()

        self.learning_rate = learning_rate

        train_size = 185452
        test_size = 39740
        val_size = 39740

        self.train_set, self.test_set, self.val_set = random_split(
            self.dataset, [train_size, test_size, val_size],
            generator=torch.Generator().manual_seed(42))
        self.train_loader = DataLoader(self.train_set,
                                       batch_size=4,
                                       num_workers=4,
                                       pin_memory=True)
        self.val_loader = DataLoader(self.val_set,
                                     batch_size=4,
                                     num_workers=4,
                                     pin_memory=True)
        self.emb = nn.Embedding(num_emb, emb_dim, padding_idx=0)

        self.task_list = [
            'eco', 'result', 'black', 'white', 'whiteelo', 'blackelo', 'decade'
        ]
        task_labels = {
            'eco': eco_dict,
            'result': result_dict,
            'black': names_dict,
            'white': names_dict,
            'whiteelo': elo_dict,
            'blackelo': elo_dict,
            'decade': year_dict
        }

        self.train_metrics_list = []
        self.train_loss_metrics_list = []
        self.classifiers = nn.ModuleDict()
        self.train_metrics = nn.ModuleDict()
        self.val_metrics = nn.ModuleDict()
        self.loss = nn.ModuleDict()
        for task in self.task_list:
            labels = task_labels[task]

            xmetrics = pl.metrics.MetricCollection([
                Accuracy(),
                Precision(num_classes=len(labels), average='macro'),
                Recall(num_classes=len(labels), average='macro')
            ])

            self.train_metrics[task] = xmetrics.clone()
            self.val_metrics[task] = xmetrics.clone()

            self.classifiers[task] = nn.Linear(emb_dim, len(labels))

            self.loss[task] = nn.CrossEntropyLoss()

        self.encoder = nn.TransformerEncoder(encoder_layer, num_layers)

        self.smax = torch.nn.Softmax(dim=1)
Exemplo n.º 14
0
    def __init__(self,
                 *,
                 d_model,
                 hidden_dim=2048,
                 num_heads,
                 dropout,
                 num_layers,
                 activation='relu',
                 kernel_size,
                 num_emb,
                 emb_dim,
                 learning_rate,
                 label_encoder,
                 hparams):
        super().__init__()

        self.losses_weight = {
            'ECO': hparams.eco_loss_wt,
            'Result': hparams.result_loss_wt,
            'Black': hparams.black_loss_wt,
            'White': hparams.white_loss_wt,
            'WhiteElo2': hparams.whiteelo_loss_wt,
            'BlackElo2': hparams.blackelo_loss_wt,
            'Decade': hparams.decade_loss_wt
        }

        self.learning_rate = learning_rate

        self.task_list = [
            'ECO', 'Result', 'Black', 'White', 'WhiteElo2', 'BlackElo2',
            'Decade'
        ]

        self.train_metrics_list = []
        self.train_loss_metrics_list = []
        self.wt_loss_metrics_list = []
        self.classifiers = nn.ModuleDict()
        self.train_metrics = nn.ModuleDict()
        self.val_metrics = nn.ModuleDict()
        self.loss = nn.ModuleDict()
        for task in self.task_list:

            xmetrics = pl.metrics.MetricCollection([
                Accuracy(),
                Precision(num_classes=label_encoder[task].vocab_size,
                          average='macro'),
                Recall(num_classes=label_encoder[task].vocab_size,
                       average='macro')
            ])

            self.train_metrics[task] = xmetrics.clone()
            self.val_metrics[task] = xmetrics.clone()

            self.classifiers[task] = nn.Linear(emb_dim,
                                               label_encoder[task].vocab_size)

            self.loss[task] = nn.CrossEntropyLoss()

        self.emb = nn.Embedding(num_emb, emb_dim, padding_idx=0)

        encoder_layer = nn.TransformerEncoderLayer(d_model,
                                                   num_heads,
                                                   dim_feedforward=hidden_dim,
                                                   dropout=dropout,
                                                   activation=activation)

        self.encoder = nn.TransformerEncoder(encoder_layer, num_layers)

        self.smax = torch.nn.Softmax(dim=1)
Exemplo n.º 15
0
def run_epoch(model,
              dataloader,
              criterion,
              optimizer=None,
              epoch=0,
              scheduler=None,
              device='cpu'):
    import pytorch_lightning.metrics.functional.classification as clmetrics
    from pytorch_lightning.metrics import Precision, Accuracy, Recall
    from sklearn.metrics import roc_auc_score, average_precision_score

    metrics = Accumulator()
    cnt = 0
    total_steps = len(dataloader)
    steps = 0
    running_corrects = 0

    accuracy = Accuracy()
    precision = Precision(num_classes=2)
    recall = Recall(num_classes=2)

    preds_epoch = []
    labels_epoch = []
    for inputs, labels in dataloader:
        steps += 1
        inputs = inputs.to(device)  # torch.Size([2, 1, 224, 224])
        labels = labels.to(device).unsqueeze(1).float()  ## torch.Size([2, 1])

        outputs = model(inputs)  # [batch_size, nb_classes]

        loss = criterion(outputs, labels)

        if optimizer:
            loss.backward()
            optimizer.step()
            optimizer.zero_grad()

        preds_epoch.extend(torch.sigmoid(outputs).tolist())
        labels_epoch.extend(labels.tolist())
        threshold = 0.5
        prob = (torch.sigmoid(outputs) > threshold).long()

        conf = torch.flatten(
            clmetrics.confusion_matrix(prob, labels, num_classes=2))
        tn, fp, fn, tp = conf

        metrics.add_dict({
            'data_count': len(inputs),
            'loss': loss.item() * len(inputs),
            'tp': tp.item(),
            'tn': tn.item(),
            'fp': fp.item(),
            'fn': fn.item(),
        })
        cnt += len(inputs)

        if scheduler:
            scheduler.step()
        del outputs, loss, inputs, labels, prob
    logger.info(f'cnt = {cnt}')

    metrics['loss'] /= cnt

    def safe_div(x, y):
        if y == 0:
            return 0
        return x / y

    _TP, _TN, _FP, _FN = metrics['tp'], metrics['tn'], metrics['fp'], metrics[
        'fn']
    acc = (_TP + _TN) / cnt
    sen = safe_div(_TP, (_TP + _FN))
    spe = safe_div(_TN, (_FP + _TN))
    prec = safe_div(_TP, (_TP + _FP))
    metrics.add('accuracy', acc)
    metrics.add('sensitivity', sen)
    metrics.add('specificity', spe)
    metrics.add('precision', prec)

    auc = roc_auc_score(labels_epoch, preds_epoch)
    aupr = average_precision_score(labels_epoch, preds_epoch)
    metrics.add('auroc', auc)
    metrics.add('aupr', aupr)

    logger.info(metrics)

    return metrics, preds_epoch, labels_epoch
Exemplo n.º 16
0
class HPALit(pl.LightningModule):
    def __init__(self, params):
        super().__init__()

        self.hparams = params
        self.lr = self.hparams.lr
        self.save_hyperparameters()
        self.model = Net(name=self.hparams.model)
        self.criterion = torch.nn.BCEWithLogitsLoss()

        self.train_accuracy = Accuracy(subset_accuracy=True)
        self.val_accuracy = Accuracy(subset_accuracy=True)
        self.train_recall = Recall()
        self.val_recall = Recall()

        self.train_df = pd.read_csv(
            f'data_preprocessing/train_fold_{self.hparams.fold}.csv')
        self.valid_df = pd.read_csv(
            f'data_preprocessing/valid_fold_{self.hparams.fold}.csv')

        self.train_transforms = A.Compose([
            A.Rotate(),
            A.HorizontalFlip(p=0.5),
            A.VerticalFlip(p=0.5),
            A.Resize(width=self.hparams.img_size,
                     height=self.hparams.img_size),
            A.Normalize(),
            ToTensorV2(),
        ])

        self.valid_transforms = A.Compose([
            A.Resize(width=self.hparams.img_size,
                     height=self.hparams.img_size),
            A.Normalize(),
            ToTensorV2(),
        ])

        self.train_dataset = CellDataset(data_dir=self.hparams.data_dir,
                                         csv_file=self.train_df,
                                         transform=self.train_transforms)
        self.val_dataset = CellDataset(data_dir=self.hparams.data_dir,
                                       csv_file=self.valid_df,
                                       transform=self.valid_transforms)

    def train_dataloader(self):
        return DataLoader(
            self.train_dataset,
            batch_size=self.hparams.batch_size,
            shuffle=True,
            num_workers=self.hparams.n_workers,
            pin_memory=True,
        )

    def val_dataloader(self):
        return DataLoader(
            self.val_dataset,
            batch_size=self.hparams.batch_size,
            shuffle=False,
            num_workers=self.hparams.n_workers,
            pin_memory=True,
        )

    def configure_optimizers(self):
        optimizer = torch.optim.Adam(self.model.parameters(), lr=self.lr)
        scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer,
                                                               'min',
                                                               factor=0.5,
                                                               patience=2,
                                                               eps=1e-6)
        lr_scheduler = {
            'scheduler': scheduler,
            'interval': 'epoch',
            'monitor': 'valid_loss_epoch'
        }

        return [optimizer], [lr_scheduler]

    def training_step(self, batch, batch_idx):
        x, y = batch
        pred = self.model(x)

        train_loss = self.criterion(pred, y)
        self.train_accuracy(torch.sigmoid(pred), y.type(torch.int))
        self.train_recall(torch.sigmoid(pred), y.type(torch.int))

        return {'loss': train_loss}

    def training_epoch_end(self, outputs):
        train_loss_epoch = torch.stack([x['loss'] for x in outputs]).mean()
        self.log('train_loss_epoch', train_loss_epoch)
        self.log('train_acc_epoch', self.train_accuracy.compute())
        self.log('train_recall_epoch', self.train_recall.compute())
        self.train_accuracy.reset()
        self.train_recall.reset()

    def validation_step(self, batch, batch_idx):
        x, y = batch
        pred = self.model(x)

        val_loss = self.criterion(pred, y)
        self.val_accuracy(torch.sigmoid(pred), y.type(torch.int))
        self.val_recall(torch.sigmoid(pred), y.type(torch.int))

        return {'valid_loss': val_loss}

    def validation_epoch_end(self, outputs):
        val_loss_epoch = torch.stack([x['valid_loss'] for x in outputs]).mean()
        self.log('valid_loss_epoch', val_loss_epoch)
        self.log('valid_acc_epoch', self.val_accuracy.compute())
        self.log('valid_recall_epoch', self.val_recall.compute())
        self.val_accuracy.reset()
        self.val_recall.reset()
Exemplo n.º 17
0
 def __init__(self, num_classes, average='macro', **kwargs):
     super(L_Recall, self).__init__()
     self.measure = Recall(num_classes=num_classes, average=average)
     return