Exemplo n.º 1
0
class TrainingEpochLoop(loops.Loop[_OUTPUTS_TYPE]):
    """Runs over all batches in a dataloader (one epoch).

    Args:
        min_steps: The minimum number of steps (batches) to process
        max_steps: The maximum number of steps (batches) to process
    """

    def __init__(self, min_steps: Optional[int] = 0, max_steps: int = -1) -> None:
        super().__init__()
        if max_steps is None:
            rank_zero_deprecation(
                "Setting `max_steps = None` is deprecated in v1.5 and will no longer be supported in v1.7."
                " Use `max_steps = -1` instead."
            )
            max_steps = -1
        elif max_steps < -1:
            raise MisconfigurationException(
                f"`max_steps` must be a non-negative integer or -1 (infinite steps). You passed in {max_steps}."
            )
        self.min_steps = min_steps
        self.max_steps = max_steps

        self.global_step: int = 0
        self.batch_progress = BatchProgress()
        self.scheduler_progress = SchedulerProgress()

        self.batch_loop: Optional[TrainingBatchLoop] = None
        self.val_loop: Optional["loops.EvaluationLoop"] = None

        self._results = ResultCollection(training=True)
        self._outputs: _OUTPUTS_TYPE = []
        self._warning_cache = WarningCache()
        self._dataloader_iter: Optional[Iterator] = None
        # caches the loaded dataloader state until dataloader objects are available
        self._dataloader_state_dict: Dict[str, Any] = {}

    @property
    def total_batch_idx(self) -> int:
        """Returns the current batch index (across epochs)"""
        # use `ready` instead of `completed` in case this is accessed after `completed` has been increased
        # but before the next `ready` increase
        return self.batch_progress.total.ready - 1

    @property
    def batch_idx(self) -> int:
        """Returns the current batch index (within this epoch)"""
        # use `ready` instead of `completed` in case this is accessed after `completed` has been increased
        # but before the next `ready` increase
        return self.batch_progress.current.ready - 1

    @property
    def _is_training_done(self) -> bool:
        max_steps_reached = _is_max_limit_reached(self.global_step, self.max_steps)
        return max_steps_reached or self._num_ready_batches_reached()

    @property
    def _is_validation_done(self) -> bool:
        # when we are restarting we want to check whether the val loop has finished
        return not self.restarting or self.val_loop.done

    @property
    def done(self) -> bool:
        """Returns whether the training should be stopped.

        The criteria are that the number of steps reached the max steps, the last batch is reached or the trainer
        signals to stop (e.g. by early stopping).
        """
        return (self._is_training_done and self._is_validation_done) or self.trainer.should_stop

    def connect(
        self,
        batch_loop: TrainingBatchLoop = None,
        val_loop: Optional["loops.EvaluationLoop"] = None,
    ) -> None:
        """Optionally connect a custom batch or validation loop to this training epoch loop."""
        if batch_loop is not None:
            self.batch_loop = batch_loop
        if val_loop is not None:
            self.val_loop = val_loop

    def reset(self) -> None:
        """Resets the internal state of the loop for a new run."""
        assert self.batch_loop is not None
        assert self.batch_loop.optimizer_loop is not None
        if self.restarting:
            self.batch_progress.reset_on_restart()
            self.scheduler_progress.reset_on_restart()
            self.batch_loop.optimizer_loop.optim_progress.reset_on_restart()
        else:
            self.batch_progress.reset_on_run()
            self.scheduler_progress.reset_on_run()
            self.batch_loop.optimizer_loop.optim_progress.reset_on_run()

        self._outputs = []

    def on_run_start(self, data_fetcher: AbstractDataFetcher, **kwargs: Any) -> None:
        # hook
        self.trainer.logger_connector.on_epoch_start()
        self.trainer.call_hook("on_epoch_start")
        self.trainer.call_hook("on_train_epoch_start")
        self.trainer.fit_loop.epoch_progress.increment_started()

        self._reload_dataloader_state_dict(data_fetcher)
        self._dataloader_iter = _update_dataloader_iter(data_fetcher, self.batch_idx + 1)

    def advance(self, *args: Any, **kwargs: Any) -> None:
        """Runs a single training batch.

        Args:
            dataloader_iter: the iterator over the dataloader producing the new batch

        Raises:
            StopIteration: When the epoch is canceled by the user returning -1
        """
        if self.restarting and self._should_check_val_fx(self.batch_idx, self.batch_progress.is_last_batch):
            # skip training and run validation in `on_advance_end`
            return

        batch_idx, (batch, self.batch_progress.is_last_batch) = next(self._dataloader_iter)

        if not self.trainer._data_connector.train_data_fetcher.store_on_device:
            with self.trainer.profiler.profile("training_batch_to_device"):
                batch = self.trainer.accelerator.batch_to_device(batch)

        self.batch_progress.increment_ready()

        # cache the batch size value to avoid extracting it again after the batch loop runs as the value will be
        # different if tbptt is enabled
        batch_size = self.trainer.logger_connector.on_batch_start(batch_idx, batch)

        if batch is None:
            self._warning_cache.warn("train_dataloader yielded None. If this was on purpose, ignore this warning...")
            batch_output = []
        else:
            # hook
            response = self.trainer.call_hook("on_batch_start")
            if response == -1:
                self.batch_progress.increment_processed()
                raise StopIteration

            # TODO: Update this in v1.7 (deprecation: #9816)
            model_fx = self.trainer.lightning_module.on_train_batch_start
            extra_kwargs = (
                {"dataloader_idx": 0}
                if callable(model_fx) and is_param_in_hook_signature(model_fx, "dataloader_idx", explicit=True)
                else {}
            )

            # hook
            response = self.trainer.call_hook("on_train_batch_start", batch, batch_idx, **extra_kwargs)
            if response == -1:
                self.batch_progress.increment_processed()
                raise StopIteration

            self.batch_progress.increment_started()

            with self.trainer.profiler.profile("run_training_batch"):
                batch_output = self.batch_loop.run(batch, batch_idx)

        self.trainer._results.batch_size = batch_size

        self.batch_progress.increment_processed()

        # update non-plateau LR schedulers
        # update epoch-interval ones only when we are at the end of training epoch
        self.update_lr_schedulers("step", update_plateau_schedulers=False)
        if self._num_ready_batches_reached():
            self.update_lr_schedulers("epoch", update_plateau_schedulers=False)

        batch_end_outputs = self._prepare_outputs_training_batch_end(
            batch_output,
            automatic=self.trainer.lightning_module.trainer.lightning_module.automatic_optimization,
            num_optimizers=len(self.trainer.optimizers),
        )

        # TODO: Update this in v1.7 (deprecation: #9816)
        model_fx = self.trainer.lightning_module.on_train_batch_end
        extra_kwargs = (
            {"dataloader_idx": 0}
            if callable(model_fx) and is_param_in_hook_signature(model_fx, "dataloader_idx", explicit=True)
            else {}
        )
        self.trainer.call_hook("on_train_batch_end", batch_end_outputs, batch, batch_idx, **extra_kwargs)
        self.trainer.call_hook("on_batch_end")
        self.trainer.logger_connector.on_batch_end()

        self.batch_progress.increment_completed()

        if is_overridden("training_epoch_end", self.trainer.lightning_module):
            self._outputs.append(batch_output)

        # -----------------------------------------
        # SAVE METRICS TO LOGGERS AND PROGRESS_BAR
        # -----------------------------------------
        self.trainer.logger_connector.update_train_step_metrics()

    def on_advance_end(self):
        """Runs validation and Checkpointing if necessary.

        Raises:
            StopIteration: if :attr:`done` evaluates to ``True`` to finish this epoch
        """
        # -----------------------------------------
        # VALIDATE IF NEEDED + CHECKPOINT CALLBACK
        # -----------------------------------------
        should_check_val = self._should_check_val_fx(self.batch_idx, self.batch_progress.is_last_batch)
        if should_check_val:
            self.trainer.validating = True
            self._run_validation()
            self.trainer.training = True

        # -----------------------------------------
        # SAVE LOGGERS (ie: Tensorboard, etc...)
        # -----------------------------------------
        self._save_loggers_on_train_batch_end()

        # update plateau LR scheduler after metrics are logged
        self.update_lr_schedulers("step", update_plateau_schedulers=True)

        if not self._should_accumulate():
            # progress global step according to grads progress
            self.global_step += 1

        # if training finished, try to exit in `on_run_end` instead as we should have enough time
        # TODO: @tchaton verify this assumption is True.
        if not self._is_training_done:
            # if fault tolerant is enabled and process has been notified, exit.
            self.trainer._exit_gracefully_on_signal()

    def on_run_end(self) -> None:
        """Calls the on_epoch_end hook.

        Returns:
            The output of each training step for each optimizer

        Raises:
            MisconfigurationException: ``train_epoch_end`` does not return ``None``
        """
        # inform logger the batch loop has finished
        self.trainer.logger_connector.epoch_end_reached()

        # get the model and call model.training_epoch_end
        model = self.trainer.lightning_module
        if is_overridden("training_epoch_end", model) and self._outputs:
            epoch_end_outputs = self._prepare_outputs_training_epoch_end(
                self._outputs,
                automatic=model.automatic_optimization,
                num_optimizers=len(self.trainer.optimizers),
            )
            # run lightning module hook training_epoch_end
            # refresh the result for custom logging at the epoch level
            model._current_fx_name = "training_epoch_end"
            epoch_end_outputs = model.training_epoch_end(epoch_end_outputs)
            if epoch_end_outputs is not None:
                raise MisconfigurationException(
                    "`training_epoch_end` expects a return of None. "
                    "HINT: remove the return statement in `training_epoch_end`."
                )
        # free memory
        self._outputs = []

        self.trainer.fit_loop.epoch_progress.increment_processed()

        # call train epoch end hooks
        self.trainer.call_hook("on_train_epoch_end")
        self.trainer.call_hook("on_epoch_end")
        self.trainer.logger_connector.on_epoch_end()

        if self._num_ready_batches_reached():
            self.update_lr_schedulers("epoch", update_plateau_schedulers=True)

        # if fault tolerant is enabled and process has been notified, exit.
        self.trainer._exit_gracefully_on_signal()

    def teardown(self) -> None:
        self._results.cpu()
        self.batch_loop.teardown()
        self.val_loop.teardown()

    def on_save_checkpoint(self) -> Dict:
        state_dict = super().on_save_checkpoint()

        if (
            self.trainer.train_dataloader is None
            or self._num_completed_batches_reached()  # did not finish
            # TODO: fault-tolerance requires a minimum number of batches so probably should be > 0
            or self.batch_progress.current.ready == 0  # did not start
        ):
            return state_dict
        state_dict["dataloader_state_dict"] = self.trainer.train_dataloader.state_dict(
            has_completed=self._has_completed()
        )
        return state_dict

    def on_load_checkpoint(self, state_dict: Dict) -> None:
        # cache the dataloader state dict until the dataloader objects are available
        self._dataloader_state_dict = state_dict.get("dataloader_state_dict")

    def _run_validation(self):
        # reload dataloaders
        self.val_loop._reload_evaluation_dataloaders()

        with torch.no_grad():
            self.val_loop.run()

    def _accumulated_batches_reached(self) -> bool:
        """Determine if accumulation will be finished by the end of the current batch."""
        return self.batch_progress.current.ready % self.trainer.accumulate_grad_batches == 0

    def _num_ready_batches_reached(self) -> bool:
        """Checks if we are in the last batch or if there are more batches to follow."""
        epoch_finished_on_ready = self.batch_progress.current.ready == self.trainer.num_training_batches
        return epoch_finished_on_ready or self.batch_progress.is_last_batch

    def _num_completed_batches_reached(self) -> bool:
        epoch_finished_on_completed = self.batch_progress.current.completed == self.trainer.num_training_batches
        dataloader_consumed_successfully = self.batch_progress.is_last_batch and self._has_completed()
        return epoch_finished_on_completed or dataloader_consumed_successfully

    def _has_completed(self) -> bool:
        return self.batch_progress.current.ready == self.batch_progress.current.completed

    def _should_accumulate(self) -> bool:
        """Checks if the optimizer step should be performed or gradients should be accumulated for the current
        step."""
        accumulation_done = self._accumulated_batches_reached()
        # Lightning steps on the final batch
        is_final_batch = self._num_ready_batches_reached()
        # but the TTP might not
        ttp_accumulates_on_final_batch = (
            self.trainer.training_type_plugin.handles_gradient_accumulation or not is_final_batch
        )
        return not accumulation_done and ttp_accumulates_on_final_batch

    @staticmethod
    def _prepare_outputs_training_batch_end(
        batch_output: _BATCH_OUTPUTS_TYPE,
        automatic: bool,
        num_optimizers: int,
    ) -> Union[List[List[Dict[str, Any]]], List[Dict[str, Any]]]:
        """Processes the outputs from the batch loop into the format passed to the ``training_batch_end`` hook.

        ``(tbptt_steps, n_opt) -> (n_opt, tbptt_steps)``. The optimizer dimension might have been squeezed.
        """
        if not batch_output:
            return []

        # convert optimizer dicts to list
        if automatic:
            batch_output = apply_to_collection(
                batch_output, dtype=dict, function=_convert_optim_dict, num_optimizers=num_optimizers
            )
        array = np.array(batch_output, dtype=object)
        if array.ndim == 1:
            array = np.expand_dims(array, 1)

        array = array.transpose((1, 0))
        array = array.squeeze()
        array = array.tolist()
        array = _recursive_unpad(array)
        return array

    @staticmethod
    def _prepare_outputs_training_epoch_end(
        batch_outputs: _OUTPUTS_TYPE,
        automatic: bool,
        num_optimizers: int,
    ) -> Union[List[List[List[Dict[str, Any]]]], List[List[Dict[str, Any]]], List[Dict[str, Any]]]:
        """Processes the outputs from the batch loop into the format passed to the ``training_epoch_end`` hook.

        ``(n_batches, tbptt_steps, n_opt) -> (n_opt, n_batches, tbptt_steps)``.
        All single-element dimensions might have been squeezed.

        This processing is necessary because the format of the inputs to the ``training_epoch_end`` hook does not
        match the loop structure and because empty dimensions are squeezed. This could break with loop customization.
        """
        # `batch_outputs` (plural) is the same as `epoch_end_output` (singular)
        if not batch_outputs:
            return []

        # convert optimizer dicts to list
        if automatic:
            batch_outputs = apply_to_collection(
                batch_outputs, dtype=dict, function=_convert_optim_dict, num_optimizers=num_optimizers
            )

        array = _recursive_pad(batch_outputs)
        if array.ndim == 2:
            array = np.expand_dims(array, 2)
        array = array.transpose((2, 0, 1))
        array = array.squeeze()
        array = array.tolist()
        array = _recursive_unpad(array)

        # in case we squeezed from 1-element array to a 0-dim array
        array = array if isinstance(array, list) else [array]
        # remove residual empty lists
        array = [item for item in array if not isinstance(item, list) or len(item)]
        return array

    def update_lr_schedulers(self, interval: str, update_plateau_schedulers: bool) -> None:
        """updates the lr schedulers based on the given interval."""
        if interval == "step" and self._should_accumulate():
            return
        active_optimizers = _get_active_optimizers(
            self.trainer.optimizers, self.trainer.optimizer_frequencies, self.total_batch_idx
        )
        self._update_learning_rates(
            interval=interval,
            update_plateau_schedulers=update_plateau_schedulers,
            opt_indices=[opt_idx for opt_idx, _ in active_optimizers],
        )

    def _update_learning_rates(
        self, interval: str, update_plateau_schedulers: bool, opt_indices: Optional[List[int]] = None
    ) -> None:
        """Update learning rates.

        Args:
            interval: either 'epoch' or 'step'.
            update_plateau_schedulers: control whether ``ReduceLROnPlateau`` or non-plateau schedulers get updated.
                This is used so non-plateau schedulers can be updated before running validation. Checkpoints are
                commonly saved during validation, however, on-plateau schedulers might monitor a validation metric
                so they have to be updated separately.
            opt_indices: indices of the optimizers to update.
        """
        if not self.trainer.lr_schedulers or not self.trainer.lightning_module.automatic_optimization:
            return

        if opt_indices is None:
            opt_indices = []

        for lr_scheduler in self.trainer.lr_schedulers:
            if isinstance(lr_scheduler["opt_idx"], int) and lr_scheduler["opt_idx"] not in opt_indices:
                continue

            if update_plateau_schedulers ^ lr_scheduler["reduce_on_plateau"]:
                continue

            current_idx = self.batch_idx if interval == "step" else self.trainer.current_epoch
            current_idx += 1  # account for both batch and epoch starts from 0
            # Take step if call to update_learning_rates matches the interval key and
            # the current step modulo the schedulers frequency is zero
            if lr_scheduler["interval"] == interval and current_idx % lr_scheduler["frequency"] == 0:
                monitor_val = None
                if lr_scheduler["reduce_on_plateau"]:
                    # If instance of ReduceLROnPlateau, we need a monitor
                    monitor_key = lr_scheduler["monitor"]
                    monitor_val = self._get_monitor_value(monitor_key)
                    if monitor_val is None:
                        if lr_scheduler.get("strict", True):
                            avail_metrics = list(self.trainer.callback_metrics)
                            raise MisconfigurationException(
                                f"ReduceLROnPlateau conditioned on metric {monitor_key}"
                                f" which is not available. Available metrics are: {avail_metrics}."
                                " Condition can be set using `monitor` key in lr scheduler dict"
                            )
                        rank_zero_warn(
                            f"ReduceLROnPlateau conditioned on metric {monitor_key}"
                            " which is not available but strict is set to `False`."
                            " Skipping learning rate update.",
                            RuntimeWarning,
                        )
                        continue

                self.scheduler_progress.increment_ready()

                # update LR
                if lr_scheduler["reduce_on_plateau"]:
                    lr_scheduler["scheduler"].step(monitor_val)
                else:
                    lr_scheduler["scheduler"].step()

                self.scheduler_progress.increment_completed()

    def _get_monitor_value(self, key: str) -> Any:
        # this is a separate method to aid in testing
        return self.trainer.callback_metrics.get(key)

    def _should_check_val_fx(self, batch_idx: int, is_last_batch: bool) -> bool:
        """Decide if we should run validation."""
        if not self.trainer.enable_validation:
            return False

        is_val_check_epoch = (self.trainer.current_epoch + 1) % self.trainer.check_val_every_n_epoch == 0
        if not is_val_check_epoch:
            return False

        # val_check_batch is inf for iterable datasets with no length defined
        is_infinite_dataset = self.trainer.val_check_batch == float("inf")
        if is_last_batch and is_infinite_dataset:
            return True

        if self.trainer.should_stop:
            return True

        # TODO(@awaelchli): let training/eval loop handle logic around limit_*_batches and val_check_batch
        is_val_check_batch = is_last_batch
        if isinstance(self.trainer.limit_train_batches, int) and is_infinite_dataset:
            is_val_check_batch = (batch_idx + 1) % self.trainer.limit_train_batches == 0
        elif self.trainer.val_check_batch != float("inf"):
            is_val_check_batch = (batch_idx + 1) % self.trainer.val_check_batch == 0
        return is_val_check_batch

    def _save_loggers_on_train_batch_end(self) -> None:
        """Flushes loggers to disk."""
        # when loggers should save to disk
        should_flush_logs = self.trainer.logger_connector.should_flush_logs
        if should_flush_logs and self.trainer.is_global_zero and self.trainer.logger is not None:
            self.trainer.logger.save()

    def _reload_dataloader_state_dict(self, data_fetcher: AbstractDataFetcher):
        if self._dataloader_state_dict:
            data_fetcher.dataloader.load_state_dict(self._dataloader_state_dict)
            self._dataloader_state_dict = None
class TrainingEpochLoop(loops.Loop[_OUTPUTS_TYPE]):
    """Runs over all batches in a dataloader (one epoch).

    Args:
        min_steps: The minimum number of steps (batches) to process
        max_steps: The maximum number of steps (batches) to process
    """
    def __init__(self,
                 min_steps: Optional[int] = None,
                 max_steps: int = -1) -> None:
        super().__init__()
        if max_steps is None:
            rank_zero_deprecation(
                "Setting `max_steps = None` is deprecated in v1.5 and will no longer be supported in v1.7."
                " Use `max_steps = -1` instead.")
            max_steps = -1
        elif max_steps < -1:
            raise MisconfigurationException(
                f"`max_steps` must be a non-negative integer or -1 (infinite steps). You passed in {max_steps}."
            )
        self.min_steps = min_steps
        self.max_steps = max_steps

        self.batch_progress = BatchProgress()
        self.scheduler_progress = SchedulerProgress()

        self.batch_loop = TrainingBatchLoop()
        self.val_loop = loops.EvaluationLoop(verbose=False)

        self._results = _ResultCollection(training=True)
        self._outputs: _OUTPUTS_TYPE = []
        self._warning_cache = WarningCache()
        # caches the loaded dataloader state until dataloader objects are available
        self._dataloader_state_dict: Dict[str, Any] = {}
        self._batches_that_stepped: int = 0

    @property
    def total_batch_idx(self) -> int:
        """Returns the current batch index (across epochs)"""
        # use `ready` instead of `completed` in case this is accessed after `completed` has been increased
        # but before the next `ready` increase
        return self.batch_progress.total.ready - 1

    @property
    def batch_idx(self) -> int:
        """Returns the current batch index (within this epoch)"""
        # use `ready` instead of `completed` in case this is accessed after `completed` has been increased
        # but before the next `ready` increase
        return self.batch_progress.current.ready - 1

    @property
    def global_step(self) -> int:
        lightning_module = self.trainer.lightning_module
        if lightning_module is None or lightning_module.automatic_optimization:
            return self.batch_loop.optimizer_loop.optim_progress.optimizer_steps
        return self.batch_loop.manual_loop.optim_step_progress.total.completed

    @property
    def _is_training_done(self) -> bool:
        max_steps_reached = _is_max_limit_reached(self.global_step,
                                                  self.max_steps)
        return max_steps_reached or self._num_ready_batches_reached()

    @property
    def _is_validation_done(self) -> bool:
        # when we are restarting we want to check whether the val loop has finished
        return not self.restarting or self.val_loop.done

    @property
    def done(self) -> bool:
        """Evaluates when to leave the loop."""
        return (self._is_training_done
                and self._is_validation_done) or self.trainer.should_stop

    def connect(  # type: ignore[override]
        self,
        batch_loop: Optional[TrainingBatchLoop] = None,
        val_loop: Optional["loops.EvaluationLoop"] = None,
    ) -> None:
        """Optionally connect a custom batch or validation loop to this training epoch loop."""
        if batch_loop is not None:
            self.batch_loop = batch_loop
        if val_loop is not None:
            self.val_loop = val_loop

    def reset(self) -> None:
        """Resets the internal state of the loop for a new run."""
        if self.restarting:
            self.batch_progress.reset_on_restart()
            self.scheduler_progress.reset_on_restart()
            self.batch_loop.optimizer_loop.optim_progress.reset_on_restart()

            trainer = self.trainer
            if not trainer.state._fault_tolerant_mode.is_enabled and trainer.num_training_batches != float(
                    "inf"):
                expected_steps = math.ceil(trainer.num_training_batches /
                                           trainer.accumulate_grad_batches)
                if self.global_step % expected_steps != 0:
                    rank_zero_warn(
                        "You're resuming from a checkpoint that ended before the epoch ended. This can cause unreliable"
                        " results if further training is done. Consider using an end-of-epoch checkpoint or enabling"
                        " fault-tolerant training:"
                        " https://pytorch-lightning.readthedocs.io/en/stable/advanced/fault_tolerant_training.html"
                    )
        else:
            self.batch_progress.reset_on_run()
            self.scheduler_progress.reset_on_run()
            self.batch_loop.optimizer_loop.optim_progress.reset_on_run()
            # when the epoch starts, the total val batch progress should be reset as it's supposed to count the batches
            # seen per epoch, this is useful for tracking when validation is run multiple times per epoch
            self.val_loop.epoch_loop.batch_progress.total.reset()

        self._outputs = []

    def on_run_start(
            self, data_fetcher: AbstractDataFetcher
    ) -> None:  # type: ignore[override]
        self._reload_dataloader_state_dict(data_fetcher)
        _ = iter(data_fetcher)  # creates the iterator inside the fetcher
        # add the previous `fetched` value to properly track `is_last_batch` with no prefetching
        data_fetcher.fetched += self.batch_progress.current.ready

    def advance(
            self, data_fetcher: AbstractDataFetcher
    ) -> None:  # type: ignore[override]
        """Runs a single training batch.

        Raises:
            StopIteration: When the epoch is canceled by the user returning -1
        """
        if self.restarting and self._should_check_val_fx(
                self.batch_idx, self.batch_progress.is_last_batch):
            # skip training and run validation in `on_advance_end`
            return
        # we are going to train first so the val loop does not need to restart
        self.val_loop.restarting = False

        if not isinstance(data_fetcher, DataLoaderIterDataFetcher):
            batch_idx = self.batch_idx + 1
            batch = next(data_fetcher)
        else:
            batch_idx, batch = next(data_fetcher)
        self.batch_progress.is_last_batch = data_fetcher.done

        self.batch_progress.increment_ready()

        self.trainer._logger_connector.on_batch_start(batch, batch_idx)

        if batch is None:
            self._warning_cache.warn(
                "train_dataloader yielded None. If this was on purpose, ignore this warning..."
            )
            batch_output = []
        else:
            # hook
            self.trainer._call_callback_hooks("on_batch_start")

            # TODO: Update this in v1.7 (deprecation: #9816)
            model_fx = self.trainer.lightning_module.on_train_batch_start
            extra_kwargs = ({
                "dataloader_idx": 0
            } if callable(model_fx) and is_param_in_hook_signature(
                model_fx, "dataloader_idx", explicit=True) else {})

            # hook
            self.trainer._call_callback_hooks("on_train_batch_start", batch,
                                              batch_idx, **extra_kwargs)
            response = self.trainer._call_lightning_module_hook(
                "on_train_batch_start", batch, batch_idx, **extra_kwargs)
            self.trainer._call_strategy_hook("on_train_batch_start", batch,
                                             batch_idx, **extra_kwargs)
            if response == -1:
                self.batch_progress.increment_processed()
                raise StopIteration

            self.batch_progress.increment_started()

            with self.trainer.profiler.profile("run_training_batch"):
                batch_output = self.batch_loop.run(batch, batch_idx)

        self.batch_progress.increment_processed()

        # update non-plateau LR schedulers
        # update epoch-interval ones only when we are at the end of training epoch
        self.update_lr_schedulers("step", update_plateau_schedulers=False)
        if self._num_ready_batches_reached():
            self.update_lr_schedulers("epoch", update_plateau_schedulers=False)

        batch_end_outputs = self._prepare_outputs_training_batch_end(
            batch_output,
            lightning_module=self.trainer.lightning_module,
            num_optimizers=len(self.trainer.optimizers),
        )

        # TODO: Update this in v1.7 (deprecation: #9816)
        model_fx = self.trainer.lightning_module.on_train_batch_end
        extra_kwargs = ({
            "dataloader_idx": 0
        } if callable(model_fx) and is_param_in_hook_signature(
            model_fx, "dataloader_idx", explicit=True) else {})
        self.trainer._call_callback_hooks("on_train_batch_end",
                                          batch_end_outputs, batch, batch_idx,
                                          **extra_kwargs)
        self.trainer._call_lightning_module_hook("on_train_batch_end",
                                                 batch_end_outputs, batch,
                                                 batch_idx, **extra_kwargs)
        self.trainer._call_callback_hooks("on_batch_end")
        self.trainer._logger_connector.on_batch_end()

        self.batch_progress.increment_completed()

        if is_overridden("training_epoch_end", self.trainer.lightning_module):
            self._outputs.append(batch_output)

        # -----------------------------------------
        # SAVE METRICS TO LOGGERS AND PROGRESS_BAR
        # -----------------------------------------
        self.trainer._logger_connector.update_train_step_metrics()

    def on_advance_end(self) -> None:
        # -----------------------------------------
        # VALIDATE IF NEEDED
        # -----------------------------------------
        should_check_val = self._should_check_val_fx(
            self.batch_idx, self.batch_progress.is_last_batch)
        if should_check_val:
            self.trainer.validating = True
            self._run_validation()
            self.trainer.training = True

        # update plateau LR scheduler after metrics are logged
        self.update_lr_schedulers("step", update_plateau_schedulers=True)

        if not self._should_accumulate():
            # this is increased once per batch disregarding multiple optimizers or tbptt on purpose for loggers
            self._batches_that_stepped += 1
        # this will save based on the `batches_that_stepped` value
        self._save_loggers_on_train_batch_end()

        # if training finished, defer exit to the parent. this assumes there will be enough time in between
        # which might not be the case depending on what's in the `*_epoch_end` hooks
        if not self._is_training_done:
            # if fault tolerant is enabled and process has been notified, exit.
            self.trainer._exit_gracefully_on_signal()

    def on_run_end(self) -> _OUTPUTS_TYPE:
        outputs, self._outputs = self._outputs, []
        return outputs

    def teardown(self) -> None:
        self._results.cpu()
        self.batch_loop.teardown()
        self.val_loop.teardown()

    def on_save_checkpoint(self) -> Dict:
        state_dict = super().on_save_checkpoint()

        if (self.trainer is not None
                and self.trainer.state._fault_tolerant_mode.is_enabled
                and self.trainer.train_dataloader is not None
                and not self._num_completed_batches_reached()  # did not finish
                # TODO: fault-tolerance requires a minimum number of batches so probably should be > 0
                and self.batch_progress.current.ready  # did start
            ):
            loader: CombinedLoader = self.trainer.train_dataloader
            state = loader.state_dict(has_completed=self._has_completed())
            if state:
                state_dict[
                    "dataloader_state_dict"] = _collect_states_on_rank_zero_over_collection(
                        state)

        return state_dict

    def on_load_checkpoint(self, state_dict: Dict) -> None:
        # cache the dataloader state dict until the dataloader objects are available
        self._dataloader_state_dict = state_dict.get("dataloader_state_dict")

    def _run_validation(self) -> None:
        # reload dataloaders
        self.val_loop._reload_evaluation_dataloaders()

        with torch.no_grad():
            self.val_loop.run()

    def _accumulated_batches_reached(self) -> bool:
        """Determine if accumulation will be finished by the end of the current batch."""
        return self.batch_progress.current.ready % self.trainer.accumulate_grad_batches == 0

    def _num_ready_batches_reached(self) -> bool:
        """Checks if we are in the last batch or if there are more batches to follow."""
        epoch_finished_on_ready = self.batch_progress.current.ready == self.trainer.num_training_batches
        return epoch_finished_on_ready or self.batch_progress.is_last_batch

    def _num_completed_batches_reached(self) -> bool:
        epoch_finished_on_completed = self.batch_progress.current.completed == self.trainer.num_training_batches
        dataloader_consumed_successfully = self.batch_progress.is_last_batch and self._has_completed(
        )
        return epoch_finished_on_completed or dataloader_consumed_successfully

    def _has_completed(self) -> bool:
        return self.batch_progress.current.ready == self.batch_progress.current.completed

    def _should_accumulate(self) -> bool:
        """Checks if the optimizer step should be performed or gradients should be accumulated for the current
        step."""
        accumulation_done = self._accumulated_batches_reached()
        # Lightning steps on the final batch
        is_final_batch = self._num_ready_batches_reached()
        # but the strategy might not
        strategy_accumulates_on_final_batch = self.trainer.strategy.handles_gradient_accumulation or not is_final_batch
        return not accumulation_done and strategy_accumulates_on_final_batch

    @staticmethod
    def _prepare_outputs_training_batch_end(
        batch_output: _BATCH_OUTPUTS_TYPE,
        lightning_module: "pl.LightningModule",
        num_optimizers: int,
    ) -> Union[List[List[Dict[str, Any]]], List[Dict[str, Any]]]:
        """Processes the outputs from the batch loop into the format passed to the ``on_train_batch_end`` hook."""
        if not batch_output:
            return []

        # convert optimizer dicts to list
        if lightning_module.automatic_optimization:
            batch_output = apply_to_collection(batch_output,
                                               dtype=dict,
                                               function=_convert_optim_dict,
                                               num_optimizers=num_optimizers)

        array = np.array(batch_output, dtype=object)
        # TODO: remove in v1.8
        if (num_optimizers > 1 and lightning_module.truncated_bptt_steps > 0
                and
                not _v1_8_output_format(lightning_module.on_train_batch_end)):
            rank_zero_deprecation(
                "You are training with multiple optimizers AND truncated backpropagation through time enabled."
                " The current format of the `on_train_batch_end(outputs, ...)` is a 2d list with sizes"
                " (n_optimizers, tbptt_steps), however, this has been deprecated and will change in version v1.8 to"
                " (tbptt_steps, n_optimizers). You can update your code by adding the following parameter to your"
                " hook signature: `on_train_batch_end(outputs, ..., new_format=True)`."
            )
            # (tbptt_steps, n_opt) -> (n_opt, tbptt_steps)
            if array.ndim == 1:
                array = np.expand_dims(array, 1)
            array = array.transpose((1, 0))
        # squeeze all single-element dimensions
        array = array.squeeze()
        array = array.tolist()
        array = _recursive_unpad(array)
        return array

    @staticmethod
    def _prepare_outputs_training_epoch_end(
        batch_outputs: _OUTPUTS_TYPE,
        lightning_module: "pl.LightningModule",
        num_optimizers: int,
    ) -> Union[List[List[List[Dict[str, Any]]]], List[List[Dict[str, Any]]],
               List[Dict[str, Any]]]:
        """Processes the outputs from the batch loop into the format passed to the ``training_epoch_end`` hook."""
        # `batch_outputs` (plural) is the same as `epoch_end_output` (singular)
        if not batch_outputs:
            return []

        # convert optimizer dicts to list
        if lightning_module.automatic_optimization:
            batch_outputs = apply_to_collection(batch_outputs,
                                                dtype=dict,
                                                function=_convert_optim_dict,
                                                num_optimizers=num_optimizers)

        array = _recursive_pad(batch_outputs)
        # TODO: remove in v1.8
        if (num_optimizers > 1 and lightning_module.truncated_bptt_steps > 0
                and
                not _v1_8_output_format(lightning_module.on_train_epoch_end)):
            rank_zero_deprecation(
                "You are training with multiple optimizers AND truncated backpropagation through time enabled."
                " The current format of the `training_epoch_end(outputs)` is a 3d list with sizes"
                " (n_optimizers, n_batches, tbptt_steps), however, this has been deprecated and will change in version"
                " v1.8 to (n_batches, tbptt_steps, n_optimizers). You can update your code by adding the following"
                " parameter to your hook signature: `training_epoch_end(outputs, new_format=True)`."
            )
            # (n_batches, tbptt_steps, n_opt) -> (n_opt, n_batches, tbptt_steps)
            if array.ndim == 2:
                array = np.expand_dims(array, 2)
            array = array.transpose((2, 0, 1))
        # squeeze all single-element dimensions
        array = array.squeeze()
        array = array.tolist()
        array = _recursive_unpad(array)
        # in case we squeezed from 1-element array to a 0-dim array
        array = array if isinstance(array, list) else [array]
        # remove residual empty lists
        array = [
            item for item in array if not isinstance(item, list) or len(item)
        ]
        return array

    def update_lr_schedulers(self, interval: str,
                             update_plateau_schedulers: bool) -> None:
        """updates the lr schedulers based on the given interval."""
        if interval == "step" and self._should_accumulate():
            return
        active_optimizers = _get_active_optimizers(
            self.trainer.optimizers, self.trainer.optimizer_frequencies,
            self.total_batch_idx)
        self._update_learning_rates(
            interval=interval,
            update_plateau_schedulers=update_plateau_schedulers,
            opt_indices=[opt_idx for opt_idx, _ in active_optimizers],
        )

    def _update_learning_rates(
            self,
            interval: str,
            update_plateau_schedulers: bool,
            opt_indices: Optional[List[int]] = None) -> None:
        """Update learning rates.

        Args:
            interval: either 'epoch' or 'step'.
            update_plateau_schedulers: control whether ``ReduceLROnPlateau`` or non-plateau schedulers get updated.
                This is used so non-plateau schedulers can be updated before running validation. Checkpoints are
                commonly saved during validation, however, on-plateau schedulers might monitor a validation metric
                so they have to be updated separately.
            opt_indices: indices of the optimizers to update.
        """
        if not self.trainer.lr_scheduler_configs or not self.trainer.lightning_module.automatic_optimization:
            return

        if opt_indices is None:
            opt_indices = []

        for config in self.trainer.lr_scheduler_configs:
            if config.opt_idx not in opt_indices:
                continue

            if update_plateau_schedulers ^ config.reduce_on_plateau:
                continue

            current_idx = self.batch_idx if interval == "step" else self.trainer.current_epoch
            current_idx += 1  # account for both batch and epoch starts from 0
            # Take step if call to update_learning_rates matches the interval key and
            # the current step modulo the schedulers frequency is zero
            if config.interval == interval and current_idx % config.frequency == 0:
                monitor_val = None
                if config.reduce_on_plateau:
                    # If instance of ReduceLROnPlateau, we need a monitor
                    monitor_key = config.monitor
                    monitor_val = self._get_monitor_value(monitor_key)
                    if monitor_val is None:
                        if config.strict:
                            avail_metrics = list(self.trainer.callback_metrics)
                            raise MisconfigurationException(
                                f"ReduceLROnPlateau conditioned on metric {monitor_key}"
                                f" which is not available. Available metrics are: {avail_metrics}."
                                " Condition can be set using `monitor` key in lr scheduler dict"
                            )
                        rank_zero_warn(
                            f"ReduceLROnPlateau conditioned on metric {monitor_key}"
                            " which is not available but strict is set to `False`."
                            " Skipping learning rate update.",
                            category=RuntimeWarning,
                        )
                        continue

                self.scheduler_progress.increment_ready()

                # update LR
                self.trainer._call_lightning_module_hook(
                    "lr_scheduler_step",
                    config.scheduler,
                    config.opt_idx,
                    monitor_val,
                )
                self.scheduler_progress.increment_completed()

    def _get_monitor_value(self, key: str) -> Any:
        # this is a separate method to aid in testing
        return self.trainer.callback_metrics.get(key)

    def _should_check_val_epoch(self):
        return (self.trainer.enable_validation
                and (self.trainer.current_epoch + 1) %
                self.trainer.check_val_every_n_epoch == 0)

    def _should_check_val_fx(self, batch_idx: int,
                             is_last_batch: bool) -> bool:
        """Decide if we should run validation."""
        if not self._should_check_val_epoch():
            return False

        # val_check_batch is inf for iterable datasets with no length defined
        is_infinite_dataset = self.trainer.val_check_batch == float("inf")
        if is_last_batch and is_infinite_dataset:
            return True

        if self.trainer.should_stop:
            return True

        # TODO(@awaelchli): let training/eval loop handle logic around limit_*_batches and val_check_batch
        is_val_check_batch = is_last_batch
        if isinstance(self.trainer.limit_train_batches,
                      int) and is_infinite_dataset:
            is_val_check_batch = (batch_idx +
                                  1) % self.trainer.limit_train_batches == 0
        elif self.trainer.val_check_batch != float("inf"):
            is_val_check_batch = (batch_idx +
                                  1) % self.trainer.val_check_batch == 0
        return is_val_check_batch

    def _save_loggers_on_train_batch_end(self) -> None:
        """Flushes loggers to disk."""
        # this assumes that `batches_that_stepped` was increased before
        should_flush = self._batches_that_stepped % self.trainer.flush_logs_every_n_steps == 0
        if should_flush or self.trainer.should_stop:
            for logger in self.trainer.loggers:
                logger.save()

    def _reload_dataloader_state_dict(
            self, data_fetcher: AbstractDataFetcher) -> None:
        if self._dataloader_state_dict:
            data_fetcher.dataloader.load_state_dict(
                self._dataloader_state_dict)
            self._dataloader_state_dict = None