Exemplo n.º 1
0
 def create_openai_model(self, config, input_ids, token_type_ids, position_ids,
                         mc_labels, lm_labels, mc_token_ids):
     model = OpenAIGPTModel(config)
     model.eval()
     hidden_states = model(input_ids, position_ids, token_type_ids)
     outputs = {
         "hidden_states": hidden_states,
     }
     return outputs
Exemplo n.º 2
0
                        for layer in self_attention_layers
                    ])

                if len(output.shape) == 2:
                    output = output.reshape(output.shape[0], -1,
                                            output.shape[1])

                output = np.swapaxes(output, 0, 1)
                list_output.append(output)

                # ====== Construct Cache ====== #
                temp_cache = {}
                for i, sent in enumerate(mini_batch):
                    hask_key = hashlib.sha256(sent.encode()).hexdigest()
                    temp_cache[hask_key] = output[i]
                self.cache.update(temp_cache)

                idx += mini_batch_size
                self.count += mini_batch_size
            output = np.concatenate(list_output, 0)

        te = time.time()
        embedding = self.get_multi_head_embedding(output, heads, head_size)
        return embedding


if __name__ == '__main__':
    model = OpenAIGPTModel('bert-base-uncased')
    model.prepare('Length')
    model.construct_encoder()