Exemplo n.º 1
0
    def _calc_loss(self, x_iter, projs, x_initial):
        norm = transforms.Normalize(projs[0].mean((1,2)), projs[0].std((1,2)))
        percep_l = 0
        proj_l = 0
        tv_l = 0
        ssim_l = 0
        if self.w_perceptual_loss > 0.0:
            percep_l = self.w_perceptual_loss * self.perceptual(x_iter, x_initial.detach())
        if self.w_proj_loss > 0.0:
            if self.randomize_projs:
                samples = random.sample(
                    [i for i in range(self.N_PROJ) ], 
                    int(self.randomize_projs*self.N_PROJ)
                )
                samples.sort()
                radon_ = Radon(self.IMAGE_SIZE, theta=self.theta[samples], circle=True)
                proj_l = self.w_proj_loss * \
                    self.mse(norm(radon_(x_iter)[0]), 
                             norm(projs[0,:,:,samples]))

            else:
                proj_l = self.w_proj_loss * self.mse(norm(self.radon(x_iter)[0]), norm(projs[0]))
        if self.w_tv_loss > 0.0:
            tv_l = self.w_tv_loss * tv_2d_l2(x_iter[0,0])
        if self.w_ssim_loss > 0.0:
            ssim_l = self.w_ssim_loss * (1 - self.ssim(x_iter, x_initial.detach() ))
        return proj_l +  percep_l +  tv_l + ssim_l, (proj_l, percep_l, tv_l, ssim_l)
Exemplo n.º 2
0
 def __init__(self, img_size=256, delta=1, in_nc=1):
     super(Due_Generator, self).__init__()
     # self.de_recon = Inpaint_Net(in_nc, out_nc, nf, nb, gc, norm_type, act_type, mode)
     self.de_sino = PConvUNet(input_channels=in_nc)
     self.de_tomo = DenoseNet()
     self.angles = np.arange(0., 180., delta)
     self.iradon_trans = IRadon(img_size, self.angles)
     self.radon_trans = Radon(img_size, self.angles)
Exemplo n.º 3
0
 def test_radon_iradon_circle_double(self):
     img = torch.zeros(1,1,256,256, dtype=torch.double)
     img[:, :, 120:130, 120:130] = 1
     circle = True
     theta = torch.arange(180)
     r = Radon(img.shape[2], theta, circle, dtype=torch.double)
     ir = IRadon(img.shape[2], theta, circle, dtype=torch.double)
     sino = r(img)
     reco = ir(sino)
     self.assertAlmostEqual(torch.nn.MSELoss()(img, reco).item(), 0, places=3)
Exemplo n.º 4
0
 def test_radon_iradon_not_circle_lazy_cut_output(self):
     img = torch.zeros(1,1,256,256)
     img[:, :, 120:130, 120:130] = 1
     circle = False
     theta = torch.arange(180)
     r = Radon(theta=theta, circle=circle)
     ir = IRadon(theta=theta, circle=circle, out_size=128)
     sino = r(img)
     reco = ir(sino)
     self.assertAlmostEqual(torch.nn.MSELoss()(img[:,:,64:192,64:192], reco).item(), 0, places=3)
Exemplo n.º 5
0
 def test_ramp_filter(self):
     img = torch.zeros(1, 1, 256, 256)
     img[:, :, 120:130, 120:130] = 1
     circle = True
     theta = torch.arange(180)
     r = Radon(img.shape[2], theta, circle)
     ir = IRadon(img.shape[2], theta, circle, use_filter=RampFilter())
     reco = ir(r(img))
     self.assertAlmostEqual(torch.nn.MSELoss()(img, reco).item(),
                            0,
                            places=4)
Exemplo n.º 6
0
 def test_stackgram_istackgram_circle(self):
     img = torch.zeros(1, 1, 256, 256)
     img[:, :, 120:130, 120:130] = 1
     circle = True
     theta = torch.arange(180)
     r = Radon(img.shape[2], theta, circle)
     ir = IRadon(img.shape[2], theta, circle)
     sg = Stackgram(img.shape[2], theta, circle)
     isg = IStackgram(img.shape[2], theta, circle)
     reco = ir(isg(sg(r(img))))
     self.assertAlmostEqual(torch.nn.MSELoss()(img, reco).item(),
                            0,
                            places=3)
Exemplo n.º 7
0
 def init_train(self, theta):
     self.theta = torch.from_numpy(theta).type(self.DTYPE)
     self.n_proj = len(theta)
     self.loss_hist = []
     self.rmse_hist = []
     self.ssim_hist = []
     self.psnr_hist = []
     self.net = self._get_net(self.net_type)
     self.i_iter = 0
     self.r = Radon(self.IMAGE_SIZE, theta, True).to(self.DEVICE)
     self.masker = Masker(width = 4, mode='interpolate')
     self.mse = torch.nn.MSELoss().to(self.DEVICE)
     self.optimizer = torch.optim.Adam(self.net.parameters(), lr=self.lr)
     self.meta_optimizer = torch.optim.Adam(self.net.parameters(), lr=self.lr*0.1)
     if self.weights:
         self._load(self.weights)
Exemplo n.º 8
0
 def test_hann_butterfly_filter(self):
     img = torch.zeros(1, 1, 256, 256)
     img[:, :, 120:130, 120:130] = 1
     circle = True
     theta = torch.arange(180)
     r = Radon(img.shape[2], theta, circle)
     ir = IRadon(img.shape[2],
                 theta,
                 circle,
                 use_filter=HannButterflyFilter(img.shape[2]))
     reco = ir(r(img))
     self.assertAlmostEqual(torch.nn.MSELoss()(img, reco).item(),
                            0,
                            places=3)
     # Check that it's close to using HannFilter
     ir_og = IRadon(img.shape[2], theta, circle, use_filter=HannFilter())
     reco_og = ir_og(r(img))
     self.assertAlmostEqual(torch.nn.MSELoss()(reco, reco_og).item(),
                            0,
                            places=4)
Exemplo n.º 9
0
from skimage.data import shepp_logan_phantom
from skimage.transform import radon, rescale, iradon

import matplotlib.pyplot as plt
import torch

import pandas as pd  # data processing, CSV file I/O (e.g. pd.read_csv)
import pydicom
import scipy.ndimage

size = 512  # set size
width = 512  # set size
delt = 1.  # smallest angle change
degree = 180.  # Constant Scan range from 0 to 180 degree

nnradon = Radon(size, np.arange(0., degree, delt))
nniradon = IRadon(size, np.arange(0., degree,
                                  delt))  # From full degree scan to image area

file = '../RadonAnalyze/dcmdata/000056.dcm'
ctfile = pydicom.dcmread(file)
print(ctfile)

prhalf = 2 * np.arange(2 / width, width / 2, 1, dtype=np.float32) / width
afhalf = 2 * np.arange(width / 2, 2 / width, -1, dtype=np.float32) / width
r_l_filter = np.append(prhalf, afhalf)  #设置滤波器,R-L是一种基础的滤波算法

img = ctfile.pixel_array
img[img == -2000] = 0
img = img.astype('float32')
# plt.figure(figsize=(8, 5))# figure 1
Exemplo n.º 10
0
    def calc(self, projs, theta):
        # recon params
        self.N_PROJ = len(theta)
        self.theta = torch.from_numpy(theta).to(self.DEVICE)
        self.radon = Radon(self.IMAGE_SIZE, self.theta, True).to(self.DEVICE)
        self.iradon = IRadon(self.IMAGE_SIZE, self.theta, True).to(self.DEVICE)

        # start recon
        if not os.path.exists(self.log_dir):
            os.mkdir(self.log_dir)

        net = self._get_net()

        x_initial = np_to_torch(self.noisy).type(self.DTYPE)
        img_gt_torch = np_to_torch(self.gt).type(self.DTYPE)
        net_input = torch.rand(1, self.INPUT_DEPTH, 
                    self.IMAGE_SIZE, self.IMAGE_SIZE).type(self.DTYPE)
        net_input_saved = net_input.detach().clone()
        noise = net_input.detach().clone()

        # Compute number of parameters
        s  = sum([np.prod(list(p.size())) for p in net.parameters()]); 
        print ('Number of params: %d' % s)

        # Optimizer
        optimizer = torch.optim.Adam(net.parameters(), lr=self.lr)
        cur_lr = self.lr
        projs = np_to_torch(projs).type(self.DTYPE)#self.radon(img_gt_torch).detach().clone()
        #np_to_torch(projs).type(self.DTYPE) # 
        # Iterations
        loss_hist = []
        rmse_hist = []
        ssim_hist = []
        ssim_noisy_hist = []
        psnr_hist = []
        psnr_noisy_hist = []
        best_network = None
        best_result = None

        print('Reconstructing with DIP...')
        for i in tqdm(range(self.n_iter)):
            
            # iter
            optimizer.zero_grad()

            if self.reg_std > 0:
                net_input = net_input_saved + (noise.normal_() * self.reg_std)

            x_iter = net(net_input)
            loss, (proj_l, percep_l, tv_l, ssim_l) = self._calc_loss(x_iter, projs, x_initial)
            
            loss.backward()
            
            optimizer.step()

            # metric
            if i % self.SHOW_EVERY == 0:
                x_iter_npy = np.clip(torch_to_np(x_iter), 0, 1).astype(np.float64)

                rmse_hist.append(
                    mean_squared_error(x_iter_npy, self.gt))
                ssim_hist.append(
                    structural_similarity(x_iter_npy, self.gt, multichannel=False)
                )
                ssim_noisy_hist.append(
                    structural_similarity(x_iter_npy, self.noisy, multichannel=False)
                )
                psnr_hist.append(
                    peak_signal_noise_ratio(x_iter_npy, self.gt)
                )
                psnr_noisy_hist.append(
                    peak_signal_noise_ratio(x_iter_npy, self.noisy)
                )
                loss_hist.append(loss.item())
                print('{}/{}- psnr: {:.3f} - psnr_noisy: {:.3f} - ssim: {:.3f} - ssim_noisy: {:.3f} - rmse: {:.5f} - loss: {:.5f} '.format(
                    self.name, i, psnr_hist[-1], psnr_noisy_hist[-1], ssim_hist[-1], ssim_noisy_hist[-1], rmse_hist[-1], loss_hist[-1]
                ))
                #print( proj_l.item(), ssim_l.item())

                # if psnr_noisy_hist[-1] / max(psnr_noisy_hist) < 0.92:
                #     print('Falling back to previous checkpoint.')
                #     for g in optimizer.param_groups:
                #         g['lr'] = cur_lr / 10.0
                #     cur_lr = cur_lr / 10.0
                #     print("optimizer.lr", cur_lr)
                #     # load network
                #     for new_param, net_param in zip(best_network, net.parameters()):
                #         net_param.data.copy_(new_param.cuda())

                if i > 2:
                    if loss_hist[-1] < min(loss_hist[0:-1]):
                        # save network
                        best_network = [x.detach().cpu() for x in net.parameters()]
                        best_result = x_iter_npy.copy() 
                plot_grid([x_iter_npy], self.FOCUS, save_name=self.log_dir+'/{}.png'.format(i))

        self.image_r = best_result
        return self.image_r