def test_initializers_1():

	wide = Wide(100, 1)
	deepdense = DeepDense(hidden_layers=[32,16], dropout=[0.5, 0.5], deep_column_idx=deep_column_idx,
	    embed_input=embed_input, continuous_cols=colnames[-5:])
	deeptext = DeepText( vocab_size=vocab_size, embed_dim=32, padding_idx=0)
	deepimage=DeepImage(pretrained=True)
	model = WideDeep(wide=wide, deepdense=deepdense, deeptext=deeptext, deepimage=deepimage, output_dim=1)
	cmodel = c(model)

	org_weights = []
	for n,p in cmodel.named_parameters():
		if n in test_layers_1: org_weights.append(p)

	model.compile(method='binary', verbose=0, initializers=initializers_1)
	init_weights = []
	for n,p in model.named_parameters():
		if n in test_layers_1: init_weights.append(p)

	res = all([torch.all((1-(a==b).int()).bool()) for a,b in zip(org_weights, init_weights)])
	assert res
Exemplo n.º 2
0
def test_initializers_1(initializers, test_layers):

    wide = Wide(np.unique(X_wide).shape[0], 1)
    deeptabular = TabMlp(
        mlp_hidden_dims=[32, 16],
        mlp_dropout=[0.5, 0.5],
        column_idx=column_idx,
        embed_input=embed_input,
        continuous_cols=colnames[-5:],
    )
    deeptext = DeepText(vocab_size=vocab_size, embed_dim=32, padding_idx=0)
    deepimage = DeepImage(pretrained=True)
    model = WideDeep(
        wide=wide,
        deeptabular=deeptabular,
        deeptext=deeptext,
        deepimage=deepimage,
        pred_dim=1,
    )
    cmodel = c(model)

    org_weights = []
    for n, p in cmodel.named_parameters():
        if n in test_layers:
            org_weights.append(p)

    trainer = Trainer(model,
                      objective="binary",
                      verbose=0,
                      initializers=initializers)
    init_weights = []
    for n, p in trainer.model.named_parameters():
        if n in test_layers:
            init_weights.append(p)

    res = all([
        torch.all((1 - (a == b).int()).bool())
        for a, b in zip(org_weights, init_weights)
    ])
    assert res
Exemplo n.º 3
0
    # deepdense = TabResnet(
    #     blocks_dims=[64, 32],
    #     dropout=0.2,
    #     column_idx=tab_preprocessor.column_idx,
    #     embed_input=tab_preprocessor.embeddings_input,
    #     continuous_cols=continuous_cols,
    # )
    deeptext = DeepText(
        vocab_size=len(text_processor.vocab.itos),
        hidden_dim=64,
        n_layers=3,
        rnn_dropout=0.5,
        padding_idx=1,
        embed_matrix=text_processor.embedding_matrix,
    )
    deepimage = DeepImage(pretrained=True, head_hidden_dims=None)
    model = WideDeep(wide=wide,
                     deeptabular=deepdense,
                     deeptext=deeptext,
                     deepimage=deepimage)

    wide_opt = torch.optim.Adam(model.wide.parameters(), lr=0.01)
    deep_opt = torch.optim.Adam(model.deeptabular.parameters())
    text_opt = RAdam(model.deeptext.parameters())
    img_opt = RAdam(model.deepimage.parameters())

    wide_sch = torch.optim.lr_scheduler.StepLR(wide_opt, step_size=5)
    deep_sch = torch.optim.lr_scheduler.StepLR(deep_opt, step_size=3)
    text_sch = torch.optim.lr_scheduler.StepLR(text_opt, step_size=5)
    img_sch = torch.optim.lr_scheduler.StepLR(img_opt, step_size=3)
Exemplo n.º 4
0
    deepdense = DeepDense(
        hidden_layers=[64, 32],
        dropout=[0.2, 0.2],
        deep_column_idx=prepare_deep.deep_column_idx,
        embed_input=prepare_deep.embeddings_input,
        continuous_cols=continuous_cols,
    )
    deeptext = DeepText(
        vocab_size=len(text_processor.vocab.itos),
        hidden_dim=64,
        n_layers=3,
        rnn_dropout=0.5,
        padding_idx=1,
        embedding_matrix=text_processor.embedding_matrix,
    )
    deepimage = DeepImage(pretrained=True, head_layers=None)
    model = WideDeep(wide=wide,
                     deepdense=deepdense,
                     deeptext=deeptext,
                     deepimage=deepimage)

    wide_opt = torch.optim.Adam(model.wide.parameters(), lr=0.01)
    deep_opt = torch.optim.Adam(model.deepdense.parameters())
    text_opt = RAdam(model.deeptext.parameters())
    img_opt = RAdam(model.deepimage.parameters())

    wide_sch = torch.optim.lr_scheduler.StepLR(wide_opt, step_size=5)
    deep_sch = torch.optim.lr_scheduler.StepLR(deep_opt, step_size=3)
    text_sch = torch.optim.lr_scheduler.StepLR(text_opt, step_size=5)
    img_sch = torch.optim.lr_scheduler.StepLR(img_opt, step_size=3)
    y_train,
    y_val,
) = train_test_split(X_wide, X_deep, X_text, X_img, target)

# build model components
wide = Wide(np.unique(X_wide).shape[0], 1)
deepdense = DeepDense(
    hidden_layers=[32, 16],
    dropout=[0.5, 0.5],
    deep_column_idx={k: v
                     for v, k in enumerate(colnames)},
    embed_input=embed_input,
    continuous_cols=colnames[-5:],
)
deeptext = DeepText(vocab_size=vocab_size, embed_dim=32, padding_idx=0)
deepimage = DeepImage(pretrained=True)

# transforms
mean = [0.406, 0.456, 0.485]  # BGR
std = [0.225, 0.224, 0.229]  # BGR
transforms1 = [ToTensor, Normalize(mean=mean, std=std)]
transforms2 = [Normalize(mean=mean, std=std)]


##############################################################################
# Test many possible scenarios of data inputs I can think off. Surely users
# will input something unexpected
##############################################################################
@pytest.mark.parametrize(
    "X_wide, X_deep, X_text, X_img, X_train, X_val, target, val_split, transforms, nepoch, null",
    [
Exemplo n.º 6
0
import numpy as np
import torch
import pytest

from pytorch_widedeep.models import DeepImage

X_images = (torch.from_numpy(np.random.rand(10, 3, 224, 224))).float()

###############################################################################
# Simply testing that it runs with the defaults
###############################################################################
model1 = DeepImage()


def test_deep_image():
    out = model1(X_images)
    assert out.size(0) == 10 and out.size(1) == 512


###############################################################################
# Testing with custome backbone
###############################################################################
model2 = DeepImage(pretrained=False)


def test_deep_image_custom_backbone():
    out = model2(X_images)
    assert out.size(0) == 10 and out.size(1) == 512


###############################################################################
    Wide,
    DeepText,
    WideDeep,
    DeepDense,
    DeepImage,
)

embed_input = [(u, i, j)
               for u, i, j in zip(["a", "b", "c"][:4], [4] * 3, [8] * 3)]
deep_column_idx = {k: v for v, k in enumerate(["a", "b", "c"])}
wide = Wide(10, 1)
deepdense = DeepDense(hidden_layers=[16, 8],
                      deep_column_idx=deep_column_idx,
                      embed_input=embed_input)
deeptext = DeepText(vocab_size=100, embed_dim=8)
deepimage = DeepImage(pretrained=False)

###############################################################################
#  test raising 'output dim errors'
###############################################################################


@pytest.mark.parametrize(
    "deepcomponent, component_name",
    [
        (None, "dense"),
        (deeptext, "text"),
        (deepimage, "image"),
    ],
)
def test_history_callback(deepcomponent, component_name):
Exemplo n.º 8
0
def test_too_cold():
    with pytest.raises(ValueError):
        mod = DeepImage(freeze_n=10)  # noqa: F841
Exemplo n.º 9
0
import numpy as np
import torch
import pytest

from pytorch_widedeep.models import DeepImage

X_images = (torch.from_numpy(np.random.rand(10, 3, 224, 224))).float()

###############################################################################
# Simply testing that it runs with the defaults
###############################################################################
model1 = DeepImage()


def test_deep_image_1():
    out = model1(X_images)
    assert out.size(0) == 10 and out.size(1) == 512


###############################################################################
# Testing with 'custom' backbone
###############################################################################
model2 = DeepImage(pretrained=False)


def test_deep_image_custom_backbone():
    out = model2(X_images)
    assert out.size(0) == 10 and out.size(1) == 512


###############################################################################