def testR2D(self): """tpm.r2d() => convert radians into degrees.""" import math self.assertAlmostEqual(tpm.r2d(math.pi), 180.0) self.assertAlmostEqual(tpm.r2d(4*math.pi), 720.0) self.assertAlmostEqual(tpm.r2d(-4*math.pi), -720.0) self.assertAlmostEqual(tpm.r2d(-2.5*math.pi), -450.0)
def testR2D(self): """tpm.r2d() => convert radians into degrees.""" import math self.assertAlmostEqual(tpm.r2d(math.pi), 180.0) self.assertAlmostEqual(tpm.r2d(4 * math.pi), 720.0) self.assertAlmostEqual(tpm.r2d(-4 * math.pi), -720.0) self.assertAlmostEqual(tpm.r2d(-2.5 * math.pi), -450.0)
def testazel2hadec(self): """tpm.azel2hadec => (AZ,EL) to (HA,DEC)""" v6 = tpm.V6S(r=1e9) for i,j,k,l in zip(self.az,self.el,self.ha_c,self.dec_c): v6.alpha = tpm.d2r(i) v6.delta = tpm.d2r(j) v61 = tpm.azel2hadec(v6.s2c(), tpm.d2r(self.lat)) v6 = v61.c2s() self.assertAlmostEqual(tpm.r2d(tpm.r2r(v6.alpha)), k, 8) self.assertAlmostEqual(tpm.r2d(tpm.r2r(v6.delta)), l, 8)
def testazel2hadec(self): """tpm.azel2hadec => (AZ,EL) to (HA,DEC)""" v6 = tpm.V6S(r=1e9) for i, j, k, l in zip(self.az, self.el, self.ha_c, self.dec_c): v6.alpha = tpm.d2r(i) v6.delta = tpm.d2r(j) v61 = tpm.azel2hadec(v6.s2c(), tpm.d2r(self.lat)) v6 = v61.c2s() self.assertAlmostEqual(tpm.r2d(tpm.r2r(v6.alpha)), k, 8) self.assertAlmostEqual(tpm.r2d(tpm.r2r(v6.delta)), l, 8)
def testHadec2azel(self): """tpm.hadec2azel => (HA,DEC) to (AZ,EL)""" v6 = tpm.V6S(r=1e9) for i, j, k, l in zip(self.az, self.el, self.ha_c, self.dec_c): j = tpm.r2d(tpm.r2r(tpm.d2r(j))) v6.alpha = tpm.d2r(k) v6.delta = tpm.d2r(l) v61 = tpm.hadec2azel(v6.s2c(), tpm.d2r(self.lat)) v6 = v61.c2s() self.assertAlmostEqual(tpm.r2d(tpm.r2r(v6.alpha)), i, 8) self.assertAlmostEqual(tpm.r2d(tpm.r2r(v6.delta)), j, 8)
def testHadec2azel(self): """tpm.hadec2azel => (HA,DEC) to (AZ,EL)""" v6 = tpm.V6S(r=1e9) for i,j,k,l in zip(self.az,self.el,self.ha_c,self.dec_c): j = tpm.r2d(tpm.r2r(tpm.d2r(j))) v6.alpha = tpm.d2r(k) v6.delta = tpm.d2r(l) v61 = tpm.hadec2azel(v6.s2c(), tpm.d2r(self.lat)) v6 = v61.c2s() self.assertAlmostEqual(tpm.r2d(tpm.r2r(v6.alpha)), i, 8) self.assertAlmostEqual(tpm.r2d(tpm.r2r(v6.delta)), j, 8)
def testToObsAzElDateJ2000ep2000(self): """P and V: J2000 (~ICRS) 1991.25 => ObsAzEl Date J2000 ep J2000.""" # Set s2=TPM_S13 and ep2=J2000 in # c_tests/test_conversion_with_pm.c. ra = [] dec = [] pmra = [] pmdec = [] px = [] f = open(hip_data, "r") for i in f: x = [float(j) for j in i.split()] ra.append(tpm.d2r(x[0])) dec.append(tpm.d2r(x[1])) # Milli-arcsec/year to arcsec/century. pmra.append( ((x[2]/1000.0) / math.cos(tpm.d2r(x[1]))) * 100.0 ) pmdec.append( (x[3]/1000.0) * 100.0) px.append(x[4]) f.close() s1 = tpm.TPM_S06 ep = tpm.y2j(1991.25) eq = tpm.J2000 s2 = tpm.TPM_S13 ep2 = tpm.J2000 f = open(os.path.join(c_tests_dir, "hipicrsep1991_ObsAzElDateJ2000ep2000.txt"), "r") pvec = tpm.PVEC() tstate = get_tstate() for i in xrange(len(ra)): v6 = tpm.cat2v6(ra[i], dec[i], pmra[i], pmdec[i], px[i], 0.0, tpm.CJ) pvec[s1] = v6 tpm.tpm(pvec, s1, s2, ep, eq, tstate) v6 = pvec[s2] tpm.proper_motion(v6, ep2, ep) d = tpm.v62cat(v6, tpm.CJ) x = [float(j) for j in f.readline().strip().split()] self.assertAlmostEqual(tpm.r2d(tpm.r2r(d['alpha'])), x[0], 8) self.assertAlmostEqual(tpm.r2d(d['delta']), x[1], 8) self.assertAlmostEqual(d['pma'], x[2], 4) self.assertAlmostEqual(d['pmd'], x[3], 4) self.assertAlmostEqual(d['px'], x[4], 8) self.assertAlmostEqual(d['rv'], x[5], 2) f.close()
def testConvertv6(self): """ConvertV6: J2000 (~ICRS) 1991.25 => FK4 B1950 ep 1950.0.""" # Set s2=TPM_S05 and ep2=B1950 in # c_tests/test_conversion_with_pm.c. ra = [] dec = [] pmra = [] pmdec = [] px = [] f = open(hip_data_icrs, "r") for i in f: x = [float(j) for j in i.split()] ra.append(tpm.d2r(x[0])) dec.append(tpm.d2r(x[1])) # Milli-arcsec/year to arcsec/century. pmra.append(((x[2] / 1000.0) / math.cos(tpm.d2r(x[1]))) * 100.0) pmdec.append((x[3] / 1000.0) * 100.0) px.append(x[4]) f.close() s1 = tpm.TPM_S06 ep = tpm.y2j(1991.25) eq = tpm.J2000 s2 = tpm.TPM_S05 ep2 = tpm.B1950 f = open(os.path.join(c_tests_dir, "hipicrsep1991_fk4B1950ep1950.txt"), "r") v6_l = [] for i in range(len(ra)): v6 = tpm.cat2v6(ra[i], dec[i], pmra[i], pmdec[i], px[i], 0.0, tpm.CJ) v6_l.append(v6) v6_out = convert.convertv6(v6_l, epoch=ep, equinox=eq, s1=s1, s2=s2) for v in v6_out: tpm.proper_motion(v, ep2, ep) d = tpm.v62cat(v, tpm.CJ) x = [float(j) for j in f.readline().strip().split()] self.assertAlmostEqual(tpm.r2d(tpm.r2r(d['alpha'])), x[0], 8) self.assertAlmostEqual(tpm.r2d(d['delta']), x[1], 8) self.assertAlmostEqual(d['pma'], x[2], 4) self.assertAlmostEqual(d['pmd'], x[3], 4) self.assertAlmostEqual(d['px'], x[4], 8) self.assertAlmostEqual(d['rv'], x[5], 2) f.close()
def testConvertv6(self): """ConvertV6: J2000 (~ICRS) 1991.25 => FK4 B1950 ep 1950.0.""" # Set s2=TPM_S05 and ep2=B1950 in # c_tests/test_conversion_with_pm.c. ra = [] dec = [] pmra = [] pmdec = [] px = [] f = open(hip_data_icrs, "r") for i in f: x = [float(j) for j in i.split()] ra.append(tpm.d2r(x[0])) dec.append(tpm.d2r(x[1])) # Milli-arcsec/year to arcsec/century. pmra.append(((x[2] / 1000.0) / math.cos(tpm.d2r(x[1]))) * 100.0) pmdec.append((x[3] / 1000.0) * 100.0) px.append(x[4]) f.close() s1 = tpm.TPM_S06 ep = tpm.y2j(1991.25) eq = tpm.J2000 s2 = tpm.TPM_S05 ep2 = tpm.B1950 f = open(os.path.join(c_tests_dir, "hipicrsep1991_fk4B1950ep1950.txt"), "r") v6_l = [] for i in range(len(ra)): v6 = tpm.cat2v6(ra[i], dec[i], pmra[i], pmdec[i], px[i], 0.0, tpm.CJ) v6_l.append(v6) v6_out = convert.convertv6(v6_l, epoch=ep, equinox=eq, s1=s1, s2=s2) for v in v6_out: tpm.proper_motion(v, ep2, ep) d = tpm.v62cat(v, tpm.CJ) x = [float(j) for j in f.readline().strip().split()] self.assertAlmostEqual(tpm.r2d(tpm.r2r(d["alpha"])), x[0], 8) self.assertAlmostEqual(tpm.r2d(d["delta"]), x[1], 8) self.assertAlmostEqual(d["pma"], x[2], 4) self.assertAlmostEqual(d["pmd"], x[3], 4) self.assertAlmostEqual(d["px"], x[4], 8) self.assertAlmostEqual(d["rv"], x[5], 2) f.close()
def testEllab(self): """tpm.ellab => apply elliptic aberration.""" # pytpm/tests/c_tests/ellab_test.c v6 = tpm.V6S(r=1e9, alpha=tpm.h2r(20), delta=tpm.d2r(40.0)) v6 = v6.s2c() v6 = tpm.ellab(tpm.J2000, v6, -1) v6 = v6.c2s() self.assertAlmostEqual(v6.r, 1e9, 5) self.assertAlmostEqual(tpm.r2h(tpm.r2r(v6.alpha)), 20.000007838, 8) self.assertAlmostEqual(tpm.r2d(tpm.r2r(v6.delta)), 39.999987574, 8)
def testEllab(self): """tpm.ellab => apply elliptic aberration.""" # pytpm/tests/c_tests/ellab_test.c v6 = tpm.V6S(r=1e9, alpha=tpm.h2r(20), delta=tpm.d2r(40.0)) v6 = v6.s2c() v6 = tpm.ellab(tpm.J2000, v6, -1) v6 = v6.c2s() self.assertAlmostEqual(v6.r, 1e9,5) self.assertAlmostEqual(tpm.r2h(tpm.r2r(v6.alpha)), 20.000007838,8) self.assertAlmostEqual(tpm.r2d(tpm.r2r(v6.delta)), 39.999987574,8)
dec = np.degrees(cat20['delta']) # Difference in HA and Dec, using TPM and SLALIB. ha_diff = np.abs(ha[indx] - ha_sla[indx]) * 3600.0 dec_diff = np.abs(dec[indx] - dec_sla[indx]) * 3600.0 # Find RA = LAST - HA. tstate = tpm.TSTATE() tpm.tpm_data(tstate, tpm.TPM_INIT) tstate.utc = utc tstate.delta_ut = tpm.delta_UT(utc) tstate.delta_at = tpm.delta_AT(utc) tstate.lon = tpm.d2r(-111.598333) tstate.lat = tpm.d2r(31.956389) tpm.tpm_data(tstate, tpm.TPM_ALL) last = tpm.r2d(tstate.last) ra = last - ha # Have to normalize to 0 - 360.0. ra = np.array([i if i > 0 else i + 360.0 for i in ra]) ra_diff = np.abs(ra[indx] - ra_sla[indx]) * 3600.0 print("Comparison with SLALIB aop using HIPPARCOS data.") fs = "{0} {1}\n" + \ "Min: {2:.4f} Max: {3:.4f} \nMean: {4:.4f} Std: {5:.4f}\n" x = stats.describe(az_diff) print(fs.format("az_diff", "arcsec", x[1][0], x[1][1], x[2], x[3]**0.5)) x = stats.describe(zd_diff) print(fs.format("zd_diff", "arcsec", x[1][0], x[1][1], x[2], x[3]**0.5)) x = stats.describe(ha_diff) print(fs.format("ha_diff", "arcsec", x[1][0], x[1][1], x[2], x[3]**0.5)) x = stats.describe(dec_diff)
dec = np.degrees(cat20['delta']) # Difference in HA and Dec, using TPM and SLALIB. ha_diff = np.abs(ha[indx] - ha_sla[indx]) * 3600.0 dec_diff = np.abs(dec[indx] - dec_sla[indx]) * 3600.0 # Find RA = LAST - HA. tstate = tpm.TSTATE() tpm.tpm_data(tstate, tpm.TPM_INIT) tstate.utc = utc tstate.delta_ut = tpm.delta_UT(utc) tstate.delta_at = tpm.delta_AT(utc) tstate.lon = tpm.d2r(-111.598333) tstate.lat = tpm.d2r(31.956389) tpm.tpm_data(tstate, tpm.TPM_ALL) last = tpm.r2d(tstate.last) ra = last - ha # Have to normalize to 0 - 360.0. ra = np.array([i if i > 0 else i + 360.0 for i in ra]) ra_diff = np.abs(ra[indx] - ra_sla[indx]) * 3600.0 print("Comparison with SLALIB aop using HIPPARCOS data.") fs = "{0} {1}\n" + \ "Min: {2:.4f} Max: {3:.4f} \nMean: {4:.4f} Std: {5:.4f}\n" x = stats.describe(az_diff) print(fs.format("az_diff", "arcsec", x[1][0], x[1][1], x[2], x[3] ** 0.5)) x = stats.describe(zd_diff) print(fs.format("zd_diff", "arcsec", x[1][0], x[1][1], x[2], x[3] ** 0.5)) x = stats.describe(ha_diff) print(fs.format("ha_diff", "arcsec", x[1][0], x[1][1], x[2], x[3] ** 0.5)) x = stats.describe(dec_diff)
def test_slalib_hip_fk52obs(self): """convert(x, s1=6, s2=19) (+ s2=20) + PM => SLALIB sla_aop HIP.""" tab = get_sla("slalib_hip_aop.txt") az_sla = [] zd_sla = [] ha_sla = [] dec_sla = [] ra_sla = [] for i in tab: # Convert longitude values to 0 - 360 az_sla.append(i[0] if i[0] >= 0 else i[0] + 360.0) zd_sla.append(i[1]) ha_sla.append(i[2] if i[2] >= 0 else i[2] + 360.0) dec_sla.append(i[3]) ra_sla.append(i[4] if i[4] >= 0 else i[4] + 360.0) v6l = [] for r, d, pa, pd, px in zip(self.hip_tab['raj2'], self.hip_tab['decj2'], self.hip_tab['pma'], self.hip_tab['pmd'], self.hip_tab['px']): r = tpm.d2r(r) d = tpm.d2r(d) # Milli-arcsec / Jul. yr to arcsec per Jul. century. pma = pa / math.cos(d) / 1000.0 * 100.0 pmd = pd / 1000.0 * 100.0 px /= 1000.0 # mili-arcsec to arc-sec. v6 = tpm.cat2v6(r, d, pma, pmd, px, 0.0, tpm.CJ) v6l.append(v6) utc = tpm.gcal2j(2010, 1, 1) - 0.5 # midnight tt = tpm.utc2tdb(utc) # Convert to Az-EL. v6o = convert.proper_motion(v6l, tt, tpm.J2000) v6o = convert.convertv6(v6o, s1=6, s2=19, utc=utc) cat = (tpm.v62cat(v, tpm.CJ) for v in v6o) az = [] zd = [] for i in cat: az.append(tpm.r2d(i['alpha'])) zd.append(90.0 - tpm.r2d(i['delta'])) # Convert Az-El to HA-Dec. v6o = convert.convertv6(v6o, s1=19, s2=20, utc=utc) cat = (tpm.v62cat(v, tpm.CJ) for v in v6o) # Find LAST. tstate = tpm.TSTATE() tpm.tpm_data(tstate, tpm.TPM_INIT) tstate.utc = utc tstate.delta_ut = tpm.delta_UT(utc) tstate.delta_at = tpm.delta_AT(utc) tstate.lon = tpm.d2r(-111.598333) tstate.lat = tpm.d2r(31.956389) tpm.tpm_data(tstate, tpm.TPM_ALL) last = tpm.r2d(tstate.last) ha = [] dec = [] ra = [] for i in cat: ha.append(tpm.r2d(i['alpha'])) dec.append(tpm.r2d(i['delta'])) # RA = LAST - HA and convert to 0 - 360. x = last - tpm.r2d(i['alpha']) ra.append(x if x >= 0 else x + 360.0) for i in range(len(az)): # Test only the coordinates with ZD < 75.0. if zd[i] < 75.0: self.assertTrue(abs(az[i] - az_sla[i]) * 3600.0 <= 0.25) self.assertTrue(abs(zd[i] - zd_sla[i]) * 3600.0 <= 0.04) self.assertTrue(abs(ha[i] - ha_sla[i]) * 3600.0 <= 0.28) self.assertTrue(abs(dec[i] - dec_sla[i]) * 3600.0 <= 0.04) self.assertTrue(abs(ra[i] - ra_sla[i]) * 3600.0 <= 0.33)
tstate.utc = tpm.J2000 tstate.lon = tpm.d2r(-111.598333) tstate.lat = tpm.d2r(31.956389) tstate.alt = 2093.093 tstate.delta_ut = tpm.delta_UT(tstate.utc) tpm.tpm_data(tstate, tpm.TPM_ALL) v6 = tpm.V6S() v6.r = 1e9 v6.alpha = ra v6.delta = de pvec[s1] = v6.s2c() s2 = i tpm.tpm(pvec, s1, s2, ep, eq, tstate) v6 = pvec[s2].c2s() ra1 = v6.alpha de1 = v6.delta ra1_d = tpm.r2d(ra1) if ra1_d < 0.0 : ra1_d += 360.0 de1_d = tpm.r2d(de1) if de1_d < 0.0 : de1_d += 360.0 s = "{0:02d}-{1:02d} {2:<17s} {3:s} {4:s} {5:8.4f} {6:8.4f}" print s.format(s1, s2, tpm.tpm_state(s2), tpm.fmt_alpha(ra1), tpm.fmt_delta(de1), ra1_d, de1_d)