Exemplo n.º 1
0
 def setUp(self):
     self.traj = pt.iterload(fn("tz2.nc"), fn("tz2.parm7"))
     cm_avg = '''
     average avg.pdb
     run
     '''
     pt.load_batch(self.traj, cm_avg).run()
Exemplo n.º 2
0
    def test_loading(self):
        for frame_slice in [(0, -1, 1), (0, 8, 2), (3, 9, 3)]:
            traj = pt.iterload('data/tz2.nc',
                               './data/tz2.parm7',
                               frame_slice=frame_slice)

            # load from text
            text = '''
            rms @CA
            radgyr @CA nomax
            '''

            s = load_batch(traj, text)
            s.run()

            rmsd0 = pt.rmsd(traj, '@CA', ref=0)
            r0 = pt.radgyr(traj, '@CA')
            s.data._pop(0)
            aa_eq(rmsd0, s.data[0])
            aa_eq(r0, s.data[1])
            assert len(s.data[0]) == traj.n_frames

            # load from list
            lines = ['rms @CA', '  radgyr @CA nomax']

            s = load_batch(traj, lines)
            s.run()
            s.data._pop(0)

            rmsd0 = pt.rmsd(traj, '@CA', ref=0)
            r0 = pt.radgyr(traj, '@CA')
            aa_eq(rmsd0, s.data[0])
            aa_eq(r0, s.data[1])
            assert len(s.data[0]) == traj.n_frames
Exemplo n.º 3
0
    def test_loading(self):
        for frame_slice in [(0, -1, 1), (0, 8, 2), (3, 9, 3)]:
            traj = pt.iterload(fn('tz2.nc'),
                               fn('tz2.parm7'),
                               frame_slice=frame_slice)

            # load from text
            text = '''
            rms @CA
            radgyr @CA nomax
            '''

            s = load_batch(traj, text)
            s.run()

            rmsd0 = pt.rmsd(traj, '@CA', ref=0)
            r0 = pt.radgyr(traj, '@CA')
            s.data._pop(0)
            aa_eq(rmsd0, s.data[0])
            aa_eq(r0, s.data[1])
            assert len(s.data[0]) == traj.n_frames

            # load from list
            lines = ['rms @CA', '  radgyr @CA nomax']

            s = load_batch(traj, lines)
            s.run()
            s.data._pop(0)

            rmsd0 = pt.rmsd(traj, '@CA', ref=0)
            r0 = pt.radgyr(traj, '@CA')
            aa_eq(rmsd0, s.data[0])
            aa_eq(r0, s.data[1])
            assert len(s.data[0]) == traj.n_frames
Exemplo n.º 4
0
    def test_nomass(self):
        traj = self.traj
        # cpptraj output
        cm = '''
        reference avg.pdb
        rms R0 reference @CA,C,N,O savematrices
        '''

        state = pt.load_batch(traj, cm)
        state.run()
        saved_mat = state.data[-1].values

        # pytraj output
        avg = pt.mean_structure(traj)
        mat = pt.calc_rotation_matrix(traj, ref=avg, mask='@CA,C,N,O')
        assert mat.shape == (traj.n_frames, 3, 3), 'mat shape'
        aa_eq(mat.flatten(), saved_mat.flatten())

        # not specify reference
        cm = '''
        rms R0 @CA,C,N,O savematrices
        '''
        state = pt.load_batch(traj, cm)
        state.run()
        saved_mat = state.data[-1].values
        mat = pt.calc_rotation_matrix(traj, mask='@CA,C,N,O')
        aa_eq(mat.flatten(), saved_mat.flatten())
Exemplo n.º 5
0
    def setUp(self):
        self.traj = pt.iterload("./data/tz2.nc", "./data/tz2.parm7")
        cm_avg = '''
        average avg.pdb
        run
        '''

        pt.load_batch(self.traj, cm_avg).run()
Exemplo n.º 6
0
    def test_raise_if_not_trajiter(self):
        traj = pt.iterload(fn('tz2.nc'), fn('tz2.parm7'))
        t0 = traj[:]

        text = '''
        rms @CA
        radgyr @CA nomax
        '''

        with pytest.raises(ValueError):
            load_batch(t0, text)
Exemplo n.º 7
0
    def test_frame_indices(self):
        traj = pt.iterload("data/tz2.truncoct.nc", "data/tz2.truncoct.parm7")
        traj2 = pt.iterload("data/tz2.truncoct.nc",
                            "data/tz2.truncoct.parm7",
                            frame_slice=(2, 8))

        txt = '''
        reference ./data/tz2.truncoct.nc 2 2
        rmsd :2-11 refindex 0 perres perresout center.agr range 1 perrescenter
        '''

        state = pt.load_batch(traj2, txt)
        state.run()

        frame_indices = range(2, 8)
        rmsd0 = pt.rmsd(traj, ref=1, mask=':2-11', frame_indices=frame_indices)
        rmsdperres = pt.rmsd_perres(traj,
                                    ref=1,
                                    mask=':2-11',
                                    perres_mask='*',
                                    resrange='1',
                                    perres_center=True,
                                    frame_indices=frame_indices)
        aa_eq(rmsd0, state.data[2])
        aa_eq(rmsdperres[1], state.data[3].values)
Exemplo n.º 8
0
 def normal_(traj=traj):
     print('serial')
     state = pt.load_batch(traj, '''
     matrix dist @P
     ''')
     state.run()
     return state.data[1:].values
Exemplo n.º 9
0
 def normal_(traj=traj):
     print('serial')
     state = pt.load_batch(traj, '''
     rms !:WAT
     ''')
     state.run()
     return state.data[1:].values
Exemplo n.º 10
0
    def test_multivector(self):
        traj = pt.iterload("./data/tz2.nc", "./data/tz2.parm7")
        state = pt.load_batch(traj, '''
        multivector resrange 3-7 name1 C name2 N
        ''')
        state.run()
        cpp_data = state.data[1:].values

        aa_eq(
            pt.multivector(traj,
                           resrange='3-7',
                           names=('C', 'N'),
                           dtype='ndarray'),
            cpp_data)
        aa_eq(
            pt.multivector(traj,
                           resrange='3-7',
                           names='C N',
                           dtype='ndarray'),
            cpp_data)
        aa_eq(
            pt.multivector(traj,
                           resrange='3-7',
                           names='name1 C name2 N',
                           dtype='ndarray'),
            cpp_data)
Exemplo n.º 11
0
    def test_diagmatrix(self):
        traj = pt.iterload("./data/tz2.nc", "./data/tz2.parm7")

        state = pt.load_batch(traj, '''
        #matrix covar @CA name mymat
        matrix dist @CA name mymat
        diagmatrix mymat vecs 6''')

        state.run()
        mat = state.data['mymat']
        cpp_evals, cpp_evecs = state.data[-1].eigenvalues, state.data[
            -1].eigenvectors

        # test triu_indices
        mat2 = mat.__class__()
        indices = np.triu_indices(mat.n_cols)

        mat2._set_data_half_matrix(mat._to_cpptraj_sparse_matrix(), mat.size,
                                   mat.n_cols)

        # OK
        data = matrix.diagonalize(mat.values, n_vecs=6, dtype='dataset')[-1]
        data2 = matrix.diagonalize(mat, n_vecs=6, dtype='dataset')[0]
        aa_eq(data.eigenvalues, cpp_evals, decimal=10)
        aa_eq(data2.eigenvalues, cpp_evals, decimal=10)

        # try numpy
        np_vals, np_vecs = np.linalg.eigh(mat2.values, UPLO='U')
        np_vals = np_vals[::-1][:6]
        np_vecs = np_vecs[:, ::-1].T[:6]

        # at least the absolute values are equal
        aa_eq(np.abs(data.eigenvectors), np.abs(cpp_evecs))
        aa_eq(np.abs(np_vecs), np.abs(cpp_evecs))

        # test raise if not having supported dtype
        self.assertRaises(ValueError, lambda: pt.matrix.diagonalize(mat, 3, dtype='ndarray'))

        # plot
        def plot_():
            try:
                from pytraj.plot import plot_matrix
                from matplotlib import pyplot as plt

                fig, ax, bar = plot_matrix(np.abs(data.eigenvectors) - np.abs(
                    cpp_evecs))
                fig.colorbar(bar)
                plt.title('data vs cpp_evecs')

                fig, ax, bar = plot_matrix(np.abs(np_vecs) - np.abs(cpp_evecs))
                fig.colorbar(bar)
                plt.title('np vs cpp_evecs')

                fig, ax, bar = plot_matrix(np.abs(np_vecs) - np.abs(
                    data.eigenvectors))
                fig.colorbar(bar)
                plt.title('np vs data')
                pt.show()
            except ImportError:
                pass
Exemplo n.º 12
0
    def test_mass(self):
        traj = self.traj
        # cpptraj output
        cm = '''
        reference avg.pdb
        rms R0 reference @CA,C,N,O savematrices mass
        '''

        state = pt.load_batch(traj, cm)
        state.run()
        saved_mat = state.data[-1].values

        # pytraj output
        avg = pt.mean_structure(traj)
        mat = pt.calc_rotation_matrix(traj,
                                      ref=avg,
                                      mask='@CA,C,N,O',
                                      mass=True)
        assert mat.shape == (traj.n_frames, 3, 3), 'mat shape'
        aa_eq(mat.flatten(), saved_mat.flatten())

        # with rmsd
        avg = pt.mean_structure(traj)
        mat2, rmsd_ = pt.calc_rotation_matrix(traj,
                                              ref=avg,
                                              mask='@CA,C,N,O',
                                              mass=True,
                                              with_rmsd=True)
        aa_eq(mat2.flatten(), saved_mat.flatten())
        assert pt.tools.rmsd(rmsd_, state.data['R0']) < 1E-3
Exemplo n.º 13
0
    def test_frame_indices(self):
        traj = pt.iterload("data/tz2.truncoct.nc", "data/tz2.truncoct.parm7")
        traj2 = pt.iterload("data/tz2.truncoct.nc",
                            "data/tz2.truncoct.parm7",
                            frame_slice=(2, 8))

        txt = '''
        reference ./data/tz2.truncoct.nc 2 2
        rmsd :2-11 refindex 0 perres perresout center.agr range 1 perrescenter
        '''

        state = pt.load_batch(traj2, txt)
        state.run()

        frame_indices = range(2, 8)
        rmsd0 = pt.rmsd(traj, ref=1, mask=':2-11', frame_indices=frame_indices)
        rmsdperres = pt.rmsd_perres(traj,
                                    ref=1,
                                    mask=':2-11',
                                    perres_mask='*',
                                    resrange='1',
                                    perres_center=True,
                                    frame_indices=frame_indices)
        aa_eq(rmsd0, state.data[2])
        aa_eq(rmsdperres[1], state.data[3].values)
Exemplo n.º 14
0
    def test_frame_indices(self):
        traj = pt.iterload(fn("tz2.truncoct.nc"), fn("tz2.truncoct.parm7"))
        traj2 = pt.iterload(fn("tz2.truncoct.nc"),
                            fn("tz2.truncoct.parm7"),
                            frame_slice=(2, 8))

        txt = '''
        reference {} 2 2
        rmsd :2-11 refindex 0 perres perresout center.agr range 1 perrescenter
        '''.format(fn('tz2.truncoct.nc'))

        state = pt.load_batch(traj2, txt)
        with tempfolder():
            state.run()

        frame_indices = range(2, 8)
        rmsd0 = pt.rmsd(traj, ref=1, mask=':2-11', frame_indices=frame_indices)
        rmsdperres = pt.rmsd_perres(traj,
                                    ref=1,
                                    mask=':2-11',
                                    perres_mask='*',
                                    resrange='1',
                                    perres_center=True,
                                    frame_indices=frame_indices)
        aa_eq(rmsd0, state.data[2])
        aa_eq(rmsdperres[1], state.data[3].values)
Exemplo n.º 15
0
    def test_multivector(self):
        traj = pt.iterload(fn('tz2.nc'), fn('tz2.parm7'))
        state = pt.load_batch(traj, '''
        multivector resrange 3-7 name1 C name2 N
        ''')
        state.run()
        cpp_data = state.data[1:].values

        aa_eq(
            pt.multivector(traj,
                           resrange='3-7',
                           names=('C', 'N'),
                           dtype='ndarray'),
            cpp_data)
        aa_eq(
            pt.multivector(traj,
                           resrange='3-7',
                           names='C N',
                           dtype='ndarray'),
            cpp_data)
        aa_eq(
            pt.multivector(traj,
                           resrange='3-7',
                           names='name1 C name2 N',
                           dtype='ndarray'),
            cpp_data)
Exemplo n.º 16
0
    def test_atomiccorr(self):
        traj = pt.iterload("./data/tz2.nc", "./data/tz2.parm7")
        state = pt.load_batch(traj, '''
        atomiccorr out test.dat :1-13 byres
        ''')
        state.run()

        data = pt.atomiccorr(traj, ':1-13', byres=True)
        aa_eq(data, state.data[1].values)
Exemplo n.º 17
0
 def normal_(traj=traj):
     print('serial')
     state = pt.load_batch(
         traj, '''
     distance :3 :2
     molsurf !:WAT
     ''')
     state.run()
     return state.data[1:].values
Exemplo n.º 18
0
    def test_raise_if_not_trajiter(self):
        traj = pt.iterload(fn('tz2.nc'), fn('tz2.parm7'))
        t0 = traj[:]

        text = '''
        rms @CA
        radgyr @CA nomax
        '''

        self.assertRaises(ValueError, lambda: load_batch(t0, text))
Exemplo n.º 19
0
    def test_atomiccorr(self):
        traj = pt.iterload(fn('tz2.nc'), fn('tz2.parm7'))
        state = pt.load_batch(
            traj, '''
        atomiccorr out test.dat :1-13 byres
        ''')
        state.run()

        data = pt.atomiccorr(traj, ':1-13', byres=True)
        aa_eq(data, state.data[1].values)
Exemplo n.º 20
0
    def test_raise_if_not_trajiter(self):
        traj = pt.iterload('data/tz2.nc', './data/tz2.parm7')
        t0 = traj[:]

        text = '''
        rms @CA
        radgyr @CA nomax
        '''

        self.assertRaises(ValueError, lambda: load_batch(t0, text))
Exemplo n.º 21
0
    def test_RMSF_with_options(self):
        traj = pt.iterload(fn('tz2.nc'), fn('tz2.parm7'))

        state = pt.load_batch(
            traj, '''
        atomicfluct @CA byres out fluct.agr''')
        state.run()

        data = pt.rmsf(traj, '@CA', options='byres')
        aa_eq(data, state.data[-1].values)
Exemplo n.º 22
0
def test_cpptraj(traj=traj):
    state = pt.load_batch(
        traj, '''
    autoimage
    distance :1 :3
    distance :5 :18
    molsurf @CA
    multidihedral
    ''')
    state.run()
    return state
Exemplo n.º 23
0
    def test_watershell(self):
        traj = pt.iterload("data/tz2.truncoct.nc", "data/tz2.truncoct.parm7")
        state = pt.load_batch(traj, '''
        watershell :1-7
        ''')

        d0 = pt.watershell(traj, solute_mask=':1-7')
        state.run()
        aa_eq(d0.values, state.data[[1, 2]].values)

        # need to provide solute_mask
        self.assertRaises(ValueError, lambda: pt.watershell(traj))
Exemplo n.º 24
0
    def test_watershell(self):
        traj = pt.iterload(fn('tz2.truncoct.nc'), fn('tz2.truncoct.parm7'))
        state = pt.load_batch(traj, '''
        watershell :1-7
        ''')

        d0 = pt.watershell(traj, solute_mask=':1-7')
        state.run()
        aa_eq(d0.values, state.data[[1, 2]].values)

        # need to provide solute_mask
        self.assertRaises(ValueError, lambda: pt.watershell(traj))
Exemplo n.º 25
0
    def test_autoimage_rms_strip(self):
        traj = pt.iterload("./data/tz2.ortho.nc", "./data/tz2.ortho.parm7")

        state = pt.load_batch(traj, '''
        autoimage
        rms
        strip !@CA
        createcrd''')
        state.run()

        # get last datset (DatasetCoordsCRD)
        crd = state.data[-1]
        t0 = traj[:]
        new_traj = t0.autoimage().superpose()['@CA']
        aa_eq(new_traj.xyz, crd.xyz)
Exemplo n.º 26
0
    def test_autoimage_rms_strip(self):
        traj = pt.iterload("./data/tz2.ortho.nc", "./data/tz2.ortho.parm7")

        state = pt.load_batch(
            traj, '''
        autoimage
        rms
        strip !@CA
        createcrd''')
        state.run()

        # get last datset (DatasetCoordsCRD)
        crd = state.data[-1]
        t0 = traj[:]
        new_traj = t0.autoimage().superpose()['@CA']
        aa_eq(new_traj.xyz, crd.xyz)
Exemplo n.º 27
0
    def test_RMSF(self):
        traj = pt.iterload(fn('tz2.nc'), fn('tz2.parm7'))

        state = pt.load_batch(traj, '''
        rms first
        average crdset MyAvg
        run
        rms ref MyAvg
        atomicfluct out fluct.agr''')
        state.run()

        t0 = traj[:]
        pt.superpose(t0, ref=0)
        avg = pt.mean_structure(t0)
        pt.superpose(t0, ref=avg)
        data = pt.rmsf(t0)
        aa_eq(data, state.data[-1].values)
Exemplo n.º 28
0
    def test_RMSF(self):
        traj = pt.iterload("./data/tz2.nc", "./data/tz2.parm7")

        state = pt.load_batch(traj, '''
        rms first
        average crdset MyAvg
        run
        rms ref MyAvg
        atomicfluct out fluct.agr''')
        state.run()

        t0 = traj[:]
        pt.superpose(t0, ref=0)
        avg = pt.mean_structure(t0)
        pt.superpose(t0, ref=avg)
        data = pt.rmsf(t0)
        aa_eq(data, state.data[-1].values)
Exemplo n.º 29
0
    def test_diagmatrix_mwcovar(self):
        traj = pt.iterload(fn('tz2.nc'), fn('tz2.parm7'))

        state = pt.load_batch(traj, '''
        matrix mwcovar @CA name mymat
        diagmatrix mymat vecs 6 name mydiag''')
        state.run()

        mat = pt.matrix.mwcovar(traj, '@CA')
        ca_indices = traj.top.select('@CA')
        eigenvectors, eigenvalues = pt.matrix.diagonalize(
            mat,
            n_vecs=6,
            scalar_type='mwcovar',
            mass=traj.top.mass[ca_indices])
        aa_eq(np.abs(state.data['mydiag'].eigenvalues), np.abs(eigenvalues))
        aa_eq(np.abs(state.data['mydiag'].eigenvectors), np.abs(eigenvectors))
Exemplo n.º 30
0
    def test_matrix(self):
        import numpy as np
        from pytraj import ArgList
        from pytraj import matrix as ma
        from pytraj.externals.six import iteritems

        matrix_test_dir = cpptraj_test_dir + "/Test_Matrix/"
        top_file = matrix_test_dir + "/1rrb_vac.prmtop"
        crd_file = matrix_test_dir + "/1rrb_vac.mdcrd"
        traj = pt.iterload(crd_file, top_file)

        with tempfolder():
            state = pt.load_cpptraj_state(all_commands, traj)
            state.run()

            state_byres = pt.load_batch(traj, byres_cm)
            state_byres.run()

            byres_matlist = []

            # no byres keyword
            for idx, line in enumerate(command_list):
                arg = ArgList(line)
                # get function
                act_key = arg.get_string_key("matrix")
                slist = arg.get_string_key('out').split(".")
                mask = arg.get_next_mask()
                fname = ".".join((slist[0], slist[-1], slist[1]))
                # get correct name
                func = ma.__dict__[act_key]

                # get command
                command = line.split(act_key)[1]
                matout = func(traj, command, dtype='ndarray')

                # cpptraj output has only 3 digits after decimal
                if 'byres' not in command:
                    aa_eq(matout.flatten(), state.data[idx + 1].values)
                else:
                    # save data for asserting later
                    byres_matlist.append(matout)

            byres_arr = np.array(byres_matlist, dtype='f8')
            # only take byres datasets
            saved_matbyres = state_byres.data[[1, 3]].values
            aa_eq(byres_arr, saved_matbyres)
Exemplo n.º 31
0
    def test_reference(self):
        traj = pt.iterload("./data/tz2.truncoct.nc", "data/tz2.truncoct.parm7")
        txt = '''
        reference data/tz2.truncoct.nc 2 2
        rmsd :2-11 refindex 0 perres perresout center.agr range 1 perrescenter
        '''

        state = pt.load_batch(traj, txt).run()
        # state.data has 3 datasets: ref, rmsd, rmsd perres

        # cpptraj use 2nd reference
        rmsd0 = pt.rmsd(traj, ref=1, mask=':2-11')
        rmsdperres = pt.rmsd_perres(traj,
                                    ref=1,
                                    mask=':2-11',
                                    perres_mask='*',
                                    resrange='1',
                                    perres_center=True)
        aa_eq(rmsd0, state.data[2])
        aa_eq(rmsdperres[1], state.data[3].values)
Exemplo n.º 32
0
    def test_distance_with_dry_traj_and_PBC_topology(self):
        '''Situation: there is dry traj (no box) but Topology has box info
        '''
        traj = pt.iterload(
            fn('dry_traj_with_PBC_top/strip.nc'),
            fn('dry_traj_with_PBC_top/strip.prmtop'))
        assert traj.top.has_box(), 'Topology must have box for testing'

        correct_distance_with_image_True = pt.distance(
            traj, ':8@OP2 :5@N1', image=True)
        correct_distance_with_image_False = pt.distance(
            traj, ':8@OP2 :5@N1', image=False)
        state = pt.load_batch(traj, '''
        distance :8@OP2 :5@N1
        ''')
        state.run()
        expected_distance = [3.08030475, 2.68452183]

        aa_eq(correct_distance_with_image_False, expected_distance)
        aa_eq(correct_distance_with_image_True, [0., 0.])
Exemplo n.º 33
0
    def test_reference(self):
        traj = pt.iterload("./data/tz2.truncoct.nc", "data/tz2.truncoct.parm7")
        txt = '''
        reference data/tz2.truncoct.nc 2 2
        rmsd :2-11 refindex 0 perres perresout center.agr range 1 perrescenter
        '''

        state = pt.load_batch(traj, txt).run()
        # state.data has 3 datasets: ref, rmsd, rmsd perres

        # cpptraj use 2nd reference
        rmsd0 = pt.rmsd(traj, ref=1, mask=':2-11')
        rmsdperres = pt.rmsd_perres(traj,
                                    ref=1,
                                    mask=':2-11',
                                    perres_mask='*',
                                    resrange='1',
                                    perres_center=True)
        aa_eq(rmsd0, state.data[2])
        aa_eq(rmsdperres[1], state.data[3].values)
Exemplo n.º 34
0
def test_mpi_load_batch():
    # create ``comm`` so you can have the info about n_cpus, cpu id
    comm = MPI.COMM_WORLD

    # you are free to update anything below here
    # _load_batch_pmap is temp method name, will be changed in future

    traj_name = fn("tz2.nc")
    parm_name = fn("tz2.parm7")

    # load to TrajectoryIterator
    traj = pt.iterload(traj_name, parm_name, frame_slice=(0, 4000))

    # make a list of things you want to
    lines = ['autoimage', 'distance :3 :10', 'molsurf @CA']

    # gather the data to 1st core (rank=0)
    #
    n_cores = comm.size
    data = _load_batch_pmap(n_cores,
                            lines=lines,
                            traj=traj,
                            mode='mpi',
                            dtype='dict')

    if comm.rank != 0:
        assert data is None

    if comm.rank == 0:
        # each core return a tuple (core_id, dict)
        # so you need to concat the dict
        # use `from pytraj.tools import concat_dict
        data_0 = concat_dict(x[0] for x in data)

        # assert to serial version (do not need to copy below to your script)
        state = pt.load_batch(traj, lines)
        state.run()
        data = state.data[1:].to_dict()

        for key_0, key in zip(sorted(data_0.keys()), sorted(data.keys())):
            aa_eq(data_0[key_0], data[key])
Exemplo n.º 35
0
    def test_reference(self):
        traj = pt.iterload(fn("tz2.truncoct.nc"), fn("tz2.truncoct.parm7"))
        txt = '''
        reference {} 2 2
        rmsd :2-11 refindex 0 perres perresout center.agr range 1 perrescenter
        '''.format(fn('tz2.truncoct.nc'))

        with tempfolder():
            state = pt.load_batch(traj, txt).run()
        # state.data has 3 datasets: ref, rmsd, rmsd perres

        # cpptraj use 2nd reference
        rmsd0 = pt.rmsd(traj, ref=1, mask=':2-11')
        rmsdperres = pt.rmsd_perres(traj,
                                    ref=1,
                                    mask=':2-11',
                                    perres_mask='*',
                                    resrange='1',
                                    perres_center=True)
        aa_eq(rmsd0, state.data[2])
        aa_eq(rmsdperres[1], state.data[3].values)
Exemplo n.º 36
0
    def test_diagmatrix(self):
        traj = pt.iterload(fn('tz2.nc'), fn('tz2.parm7'))

        state = pt.load_batch(
            traj, '''
        #matrix covar @CA name mymat
        matrix dist @CA name mymat
        diagmatrix mymat vecs 6''')

        state.run()
        mat = state.data['mymat']
        cpp_evals, cpp_evecs = state.data[-1].eigenvalues, state.data[
            -1].eigenvectors

        # test triu_indices
        mat2 = mat.__class__()
        np.triu_indices(mat.n_cols)

        mat2._set_data_half_matrix(mat._to_cpptraj_sparse_matrix(), mat.size,
                                   mat.n_cols)

        # OK
        data = matrix.diagonalize(mat.values, n_vecs=6, dtype='dataset')[-1]
        data2 = matrix.diagonalize(mat, n_vecs=6, dtype='dataset')[0]
        aa_eq(data.eigenvalues, cpp_evals, decimal=10)
        aa_eq(data2.eigenvalues, cpp_evals, decimal=10)

        # try numpy
        np_vals, np_vecs = np.linalg.eigh(mat2.values, UPLO='U')
        np_vals = np_vals[::-1][:6]
        np_vecs = np_vecs[:, ::-1].T[:6]

        # at least the absolute values are equal
        aa_eq(np.abs(data.eigenvectors), np.abs(cpp_evecs))
        aa_eq(np.abs(np_vecs), np.abs(cpp_evecs))

        # test raise if not having supported dtype
        self.assertRaises(
            ValueError, lambda: pt.matrix.diagonalize(mat, 3, dtype='ndarray'))
Exemplo n.º 37
0
    def test_ired_vector(self):
        '''test mask as a list of strings or as a 2D array of integers
        '''
        parm_dir = os.path.join(cpptraj_test_dir, 'Test_IRED',
                                '1IEE_A_prot.prmtop')
        trajin_dir = os.path.join(cpptraj_test_dir, 'Test_IRED',
                                  '1IEE_A_test.mdcrd')
        traj = pt.iterload(trajin_dir, parm_dir)

        # get a list of mask from cpptraj input
        maskes = []
        lines = None

        n_indices_cpp = []

        with open('data/ired.in', 'r') as fh:
            lines = fh.readlines()
            for line in lines:
                if 'vector' in line and 'ired' in line:
                    # example: vector v100 @1541 ired @1542
                    sline = line.split()
                    mask = ' '.join((sline[2], sline[4]))
                    n_indices_cpp.append(int(sline[2][1:]) - 1)
                    maskes.append(mask)

        h_indices_cpp = [i + 1 for i in n_indices_cpp]

        # calcuate vector from a list of strings
        data_vec = va.vector_mask(traj, maskes)

        # calcuate vector from a 2d array of integers
        nh_indices = np.array(list(zip(n_indices_cpp, h_indices_cpp)))
        data_vec_2 = va.vector_mask(traj, nh_indices)

        # re-create cpptraj input to run cpptraj
        txt = ''.join(lines)
        # add parm and trajin lines
        txt = 'parm ' + parm_dir + '\n' + \
              'trajin ' + trajin_dir + '\n' + \
              txt

        state = pt.datafiles.load_cpptraj_output(txt, dtype='state')
        state.run()
        cpp_data = state.datasetlist
        cpp_vectors = cpp_data.grep('vector', mode='dtype').values
        cpp_matired = cpp_data.grep('matrix', mode='dtype')['matired']

        # assert between pytraj's data_vec and cpptraj's cpp_vectors
        aa_eq(data_vec, cpp_vectors)

        # from a 2D array of integers
        aa_eq(data_vec_2, cpp_vectors)

        # test ired vector with ired matrix
        # open file

        with open('data/ired_reduced.in', 'r') as fh:
            text = ''.join(fh.readlines())
        state2 = pt.load_batch(traj, text)
        state2.run()

        data = pt.ired_vector_and_matrix(traj, nh_indices, order=2)
        data_vec_3 = data[0]
        assert len(data_vec_3) == 126, 'must have 126 vectors'
        matired = data[1]
        # TODO: know why??
        matired /= matired[0, 0]
        aa_eq(data_vec_3, cpp_vectors)
        assert pt.tools.rmsd(matired.flatten(),
                             cpp_matired.values) < 1E-6, 'matired'
Exemplo n.º 38
0
#!/usr/bin/env python

import pytraj as pt

root_dir = "../../tests/data/"
traj_name = root_dir + "tz2.nc"
parm_name = root_dir + "tz2.parm7"

# load to TrajectoryIterator
traj = pt.iterload(traj_name, parm_name, frame_slice=(0, 4000))

state = pt.load_batch(traj, '''
        autoimage
        distance :3 :10
        molsurf @CA
        ''')

state.run()
print([d for d in state.data])
Exemplo n.º 39
0
# make a list of things you want to
lines = ['autoimage', 'distance :3 :10', 'molsurf @CA']

# gather the data to 1st core (rank=0)
#
n_cores = comm.size
data = _load_batch_pmap(n_cores,
                        lines=lines,
                        traj=traj,
                        mode='mpi',
                        dtype='dict')

if comm.rank != 0:
    assert data is None

if comm.rank == 0:
    from pytraj.tools import concat_dict
    # each core return a tuple (core_id, dict)
    # so you need to concat the dict
    # use `from pytraj.tools import concat_dict
    data_0 = concat_dict(x[1] for x in data)

    # assert to serial version (do not need to copy below to your script)
    state = pt.load_batch(traj, lines)
    state.run()
    data = state.data[1:].to_dict()

    for key_0, key in zip(sorted(data_0.keys()), sorted(data.keys())):
        aa_eq(data_0[key_0], data[key])
Exemplo n.º 40
0
traj_name = root_dir + "tz2.nc"
parm_name = root_dir + "tz2.parm7"

# load to TrajectoryIterator
traj = pt.iterload(traj_name, parm_name, frame_slice=(0, 4000))

# make a list of things you want to
lines = ['autoimage', 'distance :3 :10', 'molsurf @CA']

# gather the data to 1st core (rank=0)
#
n_cores = comm.size
data = _load_batch_pmap(n_cores, lines=lines, traj=traj, mode='mpi', dtype='dict')

if comm.rank != 0:
    assert data is None

if comm.rank == 0:
    # each core return a tuple (core_id, dict)
    # so you need to concat the dict
    # use `from pytraj.tools import concat_dict
    data_0 = concat_dict(x[0] for x in data)

    # assert to serial version (do not need to copy below to your script)
    state = pt.load_batch(traj, lines)
    state.run()
    data = state.data[1:].to_dict()

    for key_0, key in zip(sorted(data_0.keys()), sorted(data.keys())):
        aa_eq(data_0[key_0], data[key])
Exemplo n.º 41
0
    def test_rdf(self):
        traj = pt.iterload("./data/tz2.truncoct.nc",
                           "./data/tz2.truncoct.parm7",
                           frame_slice=(0, 10))

        command = '''
        radial output/Radial.agr 0.5 10.0 :5@CD :WAT@O
        radial output/cRadial.agr 0.5 10.0 :5 :WAT@O center1
        radial output/cRadial.agr 0.5 10.0 :5 :WAT@O center2
        radial output/cRadial.agr 0.5 20.0 :3 :WAT@O
        radial output/cRadial.agr 0.5 20.0 :3 :WAT@O noimage
        radial output/radial.dat 0.5 10.0 :5@CD :WAT@O
        radial output/radial2.dat 0.25 10.0 :5@CD :WAT@O
        '''

        # get data directly from cpptraj
        state = pt.load_batch(traj, command)
        state.run()

        # get data from pytraj
        data0 = pt.rdf(traj,
                       solvent_mask=':WAT@O',
                       bin_spacing=0.5,
                       maximum=10.0,
                       solute_mask=':5@CD')

        data01 = pt.rdf(traj,
                        solvent_mask=':WAT@O',
                        bin_spacing=0.5,
                        maximum=10.0,
                        solute_mask=':5@CD')

        data1 = pt.rdf(traj,
                       solvent_mask=':WAT@O',
                       bin_spacing=0.5,
                       maximum=10.0,
                       center_solvent=True,
                       solute_mask=':5')

        data2 = pt.rdf(traj,
                       solvent_mask=':WAT@O',
                       bin_spacing=0.5,
                       maximum=10.0,
                       center_solute=True,
                       solute_mask=':5')

        data3 = pt.rdf(traj,
                       solvent_mask=':WAT@O',
                       bin_spacing=0.5,
                       maximum=20.0,
                       center_solute=False,
                       solute_mask=':3')

        data4 = pt.rdf(traj,
                       solvent_mask=':WAT@O',
                       bin_spacing=0.5,
                       maximum=20.0,
                       center_solute=False,
                       image=False,
                       solute_mask=':3')

        data5 = pt.rdf(traj,
                       solvent_mask=':WAT@O',
                       bin_spacing=0.25,
                       maximum=10.0,
                       solute_mask=':5@CD')

        # solvent_mask is array
        solvent_indices = pt.select(':WAT@O', traj.top)
        data6 = pt.rdf(traj,
                       solvent_mask=solvent_indices,
                       bin_spacing=0.25,
                       maximum=10.0,
                       solute_mask=':5@CD')

        # do assertion
        aa_eq(data0[1], state.data[1], decimal=7)
        aa_eq(data1[1], state.data[2], decimal=7)
        aa_eq(data2[1], state.data[3], decimal=7)
        aa_eq(data3[1], state.data[4], decimal=7)
        aa_eq(data4[1], state.data[5], decimal=7)

        # default solvent mask :WAT@O
        aa_eq(data01[1], state.data[1], decimal=7)
        steps = np.loadtxt('output/radial.dat').T[0]
        aa_eq(data0[0], steps)

        steps2 = np.loadtxt('output/radial2.dat').T[0]
        aa_eq(data5[0], steps2)
        aa_eq(data6[0], steps2)
Exemplo n.º 42
0
    def test_ired_vector(self):
        '''test mask as a list of strings or as a 2D array of integers
        '''
        parm_dir = os.path.join(cpptraj_test_dir, 'Test_IRED',
                                '1IEE_A_prot.prmtop')
        trajin_dir = os.path.join(cpptraj_test_dir, 'Test_IRED',
                                  '1IEE_A_test.mdcrd')
        traj = pt.iterload(trajin_dir, parm_dir)

        # get a list of mask from cpptraj input
        maskes = []
        lines = None

        n_indices_cpp = []

        with open('data/ired.in', 'r') as fh:
            lines = fh.readlines()
            for line in lines:
                if 'vector' in line and 'ired' in line:
                    # example: vector v100 @1541 ired @1542
                    sline = line.split()
                    mask = ' '.join((sline[2], sline[4]))
                    n_indices_cpp.append(int(sline[2][1:]) - 1)
                    maskes.append(mask)

        h_indices_cpp = [i + 1 for i in n_indices_cpp]

        # calcuate vector from a list of strings
        data_vec = va.vector_mask(traj, maskes)

        # calcuate vector from a 2d array of integers
        nh_indices = np.array(list(zip(n_indices_cpp, h_indices_cpp)))
        data_vec_2 = va.vector_mask(traj, nh_indices)

        # re-create cpptraj input to run cpptraj
        txt = ''.join(lines)
        # add parm and trajin lines
        txt = 'parm ' + parm_dir + '\n' + \
              'trajin ' + trajin_dir + '\n' + \
              txt

        state = pt.datafiles.load_cpptraj_output(txt, dtype='state')
        state.run()
        cpp_data = state.datasetlist
        cpp_vectors = cpp_data.grep('vector', mode='dtype').values
        cpp_matired = cpp_data.grep('matrix', mode='dtype')['matired']

        # assert between pytraj's data_vec and cpptraj's cpp_vectors
        aa_eq(data_vec, cpp_vectors)

        # from a 2D array of integers
        aa_eq(data_vec_2, cpp_vectors)

        # test ired vector with ired matrix
        # open file

        with open('data/ired_reduced.in', 'r') as fh:
            text = ''.join(fh.readlines())
        state2 = pt.load_batch(traj, text)
        state2.run()

        data = pt.ired_vector_and_matrix(traj, nh_indices, order=2)
        data_vec_3 = data[0]
        assert len(data_vec_3) == 126, 'must have 126 vectors'
        matired = data[1]
        # TODO: know why??
        matired /= matired[0, 0]
        aa_eq(data_vec_3, cpp_vectors)
        assert pt.tools.rmsd(matired.flatten(),
                             cpp_matired.values) < 1E-6, 'matired'
Exemplo n.º 43
0
    def test_rdf(self):
        traj = pt.iterload("./data/tz2.truncoct.nc",
                           "./data/tz2.truncoct.parm7",
                           frame_slice=(0, 10))

        command = '''
        radial output/Radial.agr 0.5 10.0 :5@CD :WAT@O
        radial output/cRadial.agr 0.5 10.0 :5 :WAT@O center1
        radial output/cRadial.agr 0.5 10.0 :5 :WAT@O center2
        radial output/cRadial.agr 0.5 20.0 :3 :WAT@O
        radial output/cRadial.agr 0.5 20.0 :3 :WAT@O noimage
        radial output/radial.dat 0.5 10.0 :5@CD :WAT@O
        radial output/radial2.dat 0.25 10.0 :5@CD :WAT@O
        '''

        # get data directly from cpptraj
        state = pt.load_batch(traj, command)
        state.run()

        # get data from pytraj
        data0 = pt.rdf(traj,
                       solvent_mask=':WAT@O',
                       bin_spacing=0.5,
                       maximum=10.0,
                       solute_mask=':5@CD')

        data01 = pt.rdf(traj,
                        solvent_mask=':WAT@O',
                        bin_spacing=0.5,
                        maximum=10.0,
                        solute_mask=':5@CD')

        data1 = pt.rdf(traj,
                       solvent_mask=':WAT@O',
                       bin_spacing=0.5,
                       maximum=10.0,
                       center_solvent=True,
                       solute_mask=':5')

        data2 = pt.rdf(traj,
                       solvent_mask=':WAT@O',
                       bin_spacing=0.5,
                       maximum=10.0,
                       center_solute=True,
                       solute_mask=':5')

        data3 = pt.rdf(traj,
                       solvent_mask=':WAT@O',
                       bin_spacing=0.5,
                       maximum=20.0,
                       center_solute=False,
                       solute_mask=':3')

        data4 = pt.rdf(traj,
                       solvent_mask=':WAT@O',
                       bin_spacing=0.5,
                       maximum=20.0,
                       center_solute=False,
                       image=False,
                       solute_mask=':3')

        data5 = pt.rdf(traj,
                       solvent_mask=':WAT@O',
                       bin_spacing=0.25,
                       maximum=10.0,
                       solute_mask=':5@CD')

        # solvent_mask is array
        solvent_indices = pt.select(':WAT@O', traj.top)
        data6 = pt.rdf(traj,
                       solvent_mask=solvent_indices,
                       bin_spacing=0.25,
                       maximum=10.0,
                       solute_mask=':5@CD')

        # do assertion
        aa_eq(data0[1], state.data[1], decimal=7)
        aa_eq(data1[1], state.data[2], decimal=7)
        aa_eq(data2[1], state.data[3], decimal=7)
        aa_eq(data3[1], state.data[4], decimal=7)
        aa_eq(data4[1], state.data[5], decimal=7)

        # default solvent mask :WAT@O
        aa_eq(data01[1], state.data[1], decimal=7)
        steps = np.loadtxt('output/radial.dat').T[0]
        aa_eq(data0[0], steps)

        steps2 = np.loadtxt('output/radial2.dat').T[0]
        aa_eq(data5[0], steps2)
        aa_eq(data6[0], steps2)