Exemplo n.º 1
0
   def __init__(self,Beta,Norb,U_interact,J_Hund) : 
      
      # NB : the Hamiltonian should NOT contain the quadratic part which is in G0
      Hamiltonian = U_interact * sum_list( [ N('up',i)*N('down',i) for i in range(Norb) ] )
      for i in range(Norb-1):
        for j in range(i+1,Norb):
          Hamiltonian += (U_interact-2*J_Hund) * ( N('up',i) * N('down',j) +
                                                   N('down',i) * N('up',j) ) + \
                         (U_interact-3*J_Hund) * ( N('up',i) * N('up',j) +
                                                   N('down',i) * N('down',j) )

      #Quantum_Numbers = {}
      #for i in range(Norb):
      #  Quantum_Numbers['N%sup'%(i+1)]   = N('up',i)
      #  Quantum_Numbers['N%sdown'%(i+1)] = N('down',i)

      Ntot = sum_list( [ N(s,i) for s in ['up','down'] for i in range(Norb) ] )
      Sz = sum_list( [ N('up',i)-N('down',i) for i in range(Norb) ] )

      Quantum_Numbers = {'Ntot' : Ntot, 'Sz' : Sz}

      Solver.__init__(self,
                      Beta = Beta,
                      GFstruct = [ ('%s'%(ud),[n for n in range(Norb)]) for ud in ['up','down'] ],
                      H_Local = Hamiltonian,
                      Quantum_Numbers = Quantum_Numbers )
      self.N_Cycles  = 10000
Exemplo n.º 2
0
   def __init__(self,Beta,U_interact,J_Hund) : 
     
      GFstruct = [ ('1up',[1]), ('1down',[1]), ('23up',[1,2]), ('23down',[1,2]) ]
	 
      # NB : the Hamiltonian should NOT contain the quadratic part which is in G0
      #Hamiltonian =   U_interact * sum_list( [ N('%d-up'%(i+1),1)*N('%d-down'%(i+1),1)  for i in range(3) ] )
      Hamiltonian =   U_interact * ( N('1up',1)*N('1down',1) + N('23up',1)*N('23down',1) + N('23up',2)*N('23down',2) )
      Hamiltonian +=  (U_interact-2.0*J_Hund) * ( N('1up',1) * (N('23down',1)+N('23down',2)) + N('23up',1) * N('23down',2) )
      Hamiltonian +=  (U_interact-2.0*J_Hund) * ( N('1down',1) * (N('23up',1)+N('23up',2)) + N('23up',2) * N('23down',1) )
      for s in ['up','down']:
        Hamiltonian += (U_interact-3.0*J_Hund) * (N('1%s'%s,1) * (N('23%s'%s,1)+N('23%s'%s,2)) + N('23%s'%s,1)*N('23%s'%s,2) )

#      for i in range(2):
#        for j in range(i+1,3):
#          Hamiltonian += (U_interact-2*J_Hund) * ( N('%d-up'%(i+1),1) * N('%d-down'%(j+1),1) +
#                                                   N('%d-down'%(i+1),1) * N('%d-up'%(j+1),1) ) + \
#                         (U_interact-3*J_Hund) * ( N('%d-up'%(i+1),1) * N('%d-up'%(j+1),1) +
#                                                   N('%d-down'%(i+1),1) * N('%d-down'%(j+1),1) )

#      Quantum_Numbers = { 'N1up' : N('1-up',1), 'N1down' : N('1-down',1),
#                         'N2up' : N('2-up',1), 'N2down' : N('2-down',1),
#                         'N3up' : N('3-up',1), 'N3down' : N('3-down',1) }
      Quantum_Numbers = { 'N1up' : N('1up',1), 'N1down' : N('1down',1),
                         'N23up' : N('23up',1)+N('23up',2),
                         'N23down' : N('23down',1)+N('23down',2) }

      Solver.__init__(self,
                      Beta = Beta,
                      GFstruct = GFstruct,
                      H_Local = Hamiltonian,
                      Quantum_Numbers = Quantum_Numbers )
      self.N_Cycles  = 10000
Exemplo n.º 3
0
    def __init__(self, beta, n_orb, U_interact=None, J_hund=None, gf_struct=False, map=False, use_spinflip=False,
                 use_matrix = True, l=2, T=None, dim_reps=None, irep=None, deg_orbs = [], sl_int = None):
    
        self.offset = 0
        self.use_spinflip = use_spinflip
        self.n_orb = n_orb
       
        self.U, self.Up, self.U4ind, self.offset = set_U_matrix(U_interact,J_hund,n_orb,l,use_matrix,T,sl_int,use_spinflip,dim_reps,irep) 

        if (gf_struct):
            assert map, "give also the mapping!"
            self.map = map
        else:
            # standard gf_struct and map
            gf_struct = [ ('%s'%(ud),[n for n in range(n_orb)]) for ud in ['up','down'] ]
            self.map = {'up' : ['up' for v in range(self.n_orb)], 'down' : ['down' for v in range(self.n_orb)]}

        #print gf_struct,self.map
        
        if (use_spinflip==False):
            Hamiltonian = self.__set_hamiltonian_density()
        else:
            if (use_matrix):
                #Hamiltonian = self.__set_full_hamiltonian_slater()
                Hamiltonian = self.__set_spinflip_hamiltonian_slater()
            else:
                Hamiltonian = self.__set_full_hamiltonian_kanamori(J_hund = J_hund)

        Quantum_Numbers = self.__set_quantum_numbers(gf_struct)
    
        # Determine if there are only blocs of size 1:
        self.blocssizeone = True
        for ib in gf_struct:
            if (len(ib[1])>1): self.blocssizeone = False

       
        # now initialize the solver with the stuff given above:
        Solver.__init__(self,
                        beta = beta,
                        GFstruct = gf_struct,
                        H_Local = Hamiltonian,
                        Quantum_Numbers = Quantum_Numbers )

        #self.set_global_moves(deg_orbs)

        self.N_Cycles  = 10000
        self.Nmax_Matrix = 100
        self.N_Time_Slices_Delta= 10000
        #if ((len(gf_struct)==2*n_orb) and (use_spinflip==False)): 
        if ((self.blocssizeone) and (use_spinflip==False)):
            self.Use_Segment_Picture = True
        else:
            self.Use_Segment_Picture = False
Exemplo n.º 4
0
   def __init__(self,Beta,U_interact) : 

      self.P = numpy.array([[1,1,1,1], [1,-1,1,-1],[1,1,-1,-1],[1,-1,-1,1]])/2.
      self.Pinv = numpy.linalg.inv(self.P)

      def Cdiag(s):
         s= '-%s'%s
         return [ C('00'+s,1), C('10'+s,1), C('01'+s,1),C('11'+s,1) ] 

      Cnat,Nnat={},{}
      for i in range(4) :
         s= 'up-%d'%(i+1)
         Cnat[s] = sum_list( [ self.P[i,j]*c  for j,c in enumerate(Cdiag('up'))] )
         Nnat[s] = Cnat[s].dagger() * Cnat[s]
         s= 'down-%d'%(i+1)
         Cnat[s] = sum_list( [ self.P[i,j]*c  for j,c in enumerate(Cdiag('down'))] )
         Nnat[s] = Cnat[s].dagger() * Cnat[s]

      def symm(s):
         s= '-%s'%s
         Cdag('00'+s,1).symmetry()['kx'] =  1
         Cdag('10'+s,1).symmetry()['kx'] = -1
         Cdag('01'+s,1).symmetry()['kx'] =  1
         Cdag('11'+s,1).symmetry()['kx'] = -1
         Cdag('00'+s,1).symmetry()['ky'] =  1
         Cdag('10'+s,1).symmetry()['ky'] =  1
         Cdag('01'+s,1).symmetry()['ky'] = -1
         Cdag('11'+s,1).symmetry()['ky'] = -1
      symm('up'); symm('down')

      # NB : the Hamiltonian should NOT contain the quadratic part which is in G0
      Hamiltonian = U_interact* sum_list( [ Nnat['up-%d'%(i+1)]* Nnat['down-%d'%(i+1)] for i in range (4)])

      N_u = sum_list( [ Nnat['up-%d'%(i+1)] for i in range(4) ] )
      N_d = sum_list( [ Nnat['down-%d'%(i+1)] for i in range(4) ] )

      Quantum_Numbers = { 'kx' : 'kx', 'ky' : 'ky', 'N_u' : N_u, 'N_d' : N_d }

      Solver.__init__(self,
                      Beta = Beta,
                      GFstruct = [ ('00-up',[1]), ('10-up',[1]), ('01-up',[1]), ('11-up',[1]),
                                   ('00-down',[1]), ('10-down',[1]), ('01-down',[1]), ('11-down',[1]) ], 
                      H_Local = Hamiltonian,
                      Quantum_Numbers = Quantum_Numbers,
                      Nmax = 2000)

      self.N_Cycles  = 100000
      self.N_Frequencies_Accumulated = 4*int(0.075*Beta/(2*3.1415))
      self.fitting_Frequency_Start = 3*int(0.075*Beta/(2*3.1415))
      self.Length_Cycle = 100
      self.Nmax_Matrix = 200
      self.Use_Segment_Picture = False
Exemplo n.º 5
0
   def __init__(self,Beta,U_interact) : 


     Hamiltonian = U_interact*( N('1-up',1)*N('1-down',1) + N('1-up',1)*N('2-up',1) +
                                N('1-up',1)*N('2-down',1) + N('1-down',1)*N('2-up',1) +
                                N('1-down',1)*N('2-down',1) + N('2-up',1)*N('2-down',1) )

     Quantum_Numbers = { 'Nup'   : N('1-up',1)+N('2-up',1),
                        'Ndown' : N('1-down',1)+N('2-down',1),
                        'Lz'    : N('1-up',1)+N('1-down',1)-N('2-up',1)-N('2-down',1) }

     Solver.__init__(self,
                     Beta = Beta,
                     GFstruct = [ ('1-up',[1]), ('1-down',[1]), ('2-up',[1]), ('2-down',[1]) ],
                     H_Local = Hamiltonian,
                     Quantum_Numbers = Quantum_Numbers )
     self.N_Cycles  = 1000000
     self.Nmax_Matrix = 300
Exemplo n.º 6
0
   def __init__(self,Beta,U_interact) : 
      
      self.P = numpy.array([[1,1,1,1], [1,-1,1,-1],[1,1,-1,-1],[1,-1,-1,1]])/2.
      self.Pinv = numpy.linalg.inv(self.P)

      def Cdiag(s):
         s= '-%s'%s
         return [ C('00'+s,1), C('10'+s,1), C('01'+s,1),C('11'+s,1) ] 

      Cnat,Nnat={},{}
      for i in range(4) :
         s= 'up-%d'%(i+1)
         Cnat[s] = sum_list( [ self.P[i,j]*c  for j,c in enumerate(Cdiag('up'))] )
         Nnat[s] = Cnat[s].dagger() * Cnat[s]
         s= 'down-%d'%(i+1)
         Cnat[s] = sum_list( [ self.P[i,j]*c  for j,c in enumerate(Cdiag('down'))] )
         Nnat[s] = Cnat[s].dagger() * Cnat[s]

      def symm(s):
         s= '-%s'%s
         Cdag('00'+s,1).symmetry()['kx'] =  1
         Cdag('10'+s,1).symmetry()['kx'] = -1
         Cdag('01'+s,1).symmetry()['kx'] =  1
         Cdag('11'+s,1).symmetry()['kx'] = -1
         Cdag('00'+s,1).symmetry()['ky'] =  1
         Cdag('10'+s,1).symmetry()['ky'] =  1
         Cdag('01'+s,1).symmetry()['ky'] = -1
         Cdag('11'+s,1).symmetry()['ky'] = -1
      symm('up'); symm('down')

      # NB : the Hamiltonian should NOT contain the quadratic part which is in G0
      Hamiltonian = U_interact* sum_list( [ Nnat['up-%d'%(i+1)]* Nnat['down-%d'%(i+1)]  for i in range (4)]) #!!

      N_u = sum_list( [ Nnat['up-%d'%(i+1)] for i in range(4) ] )
      N_d = sum_list( [ Nnat['down-%d'%(i+1)] for i in range(4) ] )

      Quantum_Numbers = { 'kx' : 'kx', 'ky' : 'ky', 'N_u' : N_u, 'N_d' : N_d }

      Solver.__init__(self,Beta=Beta,GFstruct=[ ('00-up',[1]), ('10-up',[1]), ('01-up',[1]), ('11-up',[1]),
                                                ('00-down',[1]), ('10-down',[1]), ('01-down',[1]), ('11-down',[1]) ],
                      H_Local = Hamiltonian,Quantum_Numbers= Quantum_Numbers )

      self.N_Cycles  = 10
Exemplo n.º 7
0
   def __init__(self,Beta,U_interact) : 
      
      C_up_1 = (C('Up+',1) + C('Up-',1))/sqrt(2)
      C_up_2 = (C('Up+',1) - C('Up-',1))/sqrt(2)
      C_do_1 = (C('Do+',1) + C('Do-',1))/sqrt(2)
      C_do_2 = (C('Do+',1) - C('Do-',1))/sqrt(2)

      Cdag('Up+',1).symmetry()['parity'] = 1
      Cdag('Up-',1).symmetry()['parity'] = -1
      Cdag('Do+',1).symmetry()['parity'] = 1
      Cdag('Do-',1).symmetry()['parity'] = -1

      N_up_1 = C_up_1.dagger()*C_up_1
      N_up_2 = C_up_2.dagger()*C_up_2
      N_do_1 = C_do_1.dagger()*C_do_1
      N_do_2 = C_do_2.dagger()*C_do_2

      # NB : the Hamiltonian should NOT contain the quadratic part which is in G0
      Hamiltonian = U_interact * ( N_up_1*N_do_1  + N_up_2*N_do_2 )

      N_u = N('Up-',1)+N('Up+',1)
      N_d = N('Do-',1)+N('Do+',1)

      Quantum_Numbers = { 'parity' : 'parity', 'N_u' : N_u, 'N_d' : N_d }

      Solver.__init__(self,
                      Beta = Beta,
                      GFstruct = [ ('Up+',[1]), ('Up-',[1]), ('Do+',[1]), ('Do-',[1]) ],
                      H_Local = Hamiltonian,
                      Quantum_Numbers = Quantum_Numbers,
                      Nmax = 2000)

      self.N_Cycles  = 100000
      self.N_Frequencies_Accumulated = 4*int(0.075*Beta/(2*3.1415))
      self.fitting_Frequency_Start = 3*int(0.075*Beta/(2*3.1415))
      self.Length_Cycle = 100
      self.Nmax_Matrix = 200
      self.Use_Segment_Picture = False