def test_solver_comparison(self):
        """
        Test that all solvers return the same and correct solution.

        """

        # Convex functions.
        y = [1, 0, 0.1, 8, -6.5, 0.2, 0.004, 0.01]
        sol = [0.75, 0, 0, 7.75, -6.25, 0, 0, 0]
        w1, w2 = .8, .4
        f1 = functions.norm_l2(y=y, lambda_=w1 / 2.)  # Smooth.
        f2 = functions.norm_l1(lambda_=w2 / 2.)  # Non-smooth.

        # Solvers.
        L = w1  # Lipschitz continuous gradient.
        step = 1. / L
        lambda_ = 0.5
        params = {'step': step, 'lambda_': lambda_}
        slvs = []
        slvs.append(
            solvers.forward_backward(accel=acceleration.dummy(), step=step))
        slvs.append(solvers.douglas_rachford(**params))
        slvs.append(solvers.generalized_forward_backward(**params))

        # Compare solutions.
        params = {'rtol': 1e-14, 'verbosity': 'NONE', 'maxit': 1e4}
        niters = [2, 61, 26]
        for solver, niter in zip(slvs, niters):
            x0 = np.zeros(len(y))
            ret = solvers.solve([f1, f2], x0, solver, **params)
            nptest.assert_allclose(ret['sol'], sol)
            self.assertEqual(ret['niter'], niter)
            self.assertIs(ret['sol'], x0)  # The initial value was modified.
    def test_douglas_rachford(self):
        """
        Test douglas-rachford solver with L1-norm, L2-norm and dummy functions.

        """
        y = [4, 5, 6, 7]
        solver = solvers.douglas_rachford()
        param = {'solver': solver, 'verbosity': 'NONE'}

        # L2-norm prox and dummy prox.
        f1 = functions.norm_l2(y=y)
        f2 = functions.dummy()
        ret = solvers.solve([f1, f2], np.zeros(len(y)), **param)
        nptest.assert_allclose(ret['sol'], y)
        self.assertEqual(ret['crit'], 'RTOL')
        self.assertEqual(ret['niter'], 35)

        # L2-norm prox and L1-norm prox.
        f1 = functions.norm_l2(y=y)
        f2 = functions.norm_l1(y=y)
        ret = solvers.solve([f1, f2], np.zeros(len(y)), **param)
        nptest.assert_allclose(ret['sol'], y)
        self.assertEqual(ret['crit'], 'RTOL')
        self.assertEqual(ret['niter'], 4)

        # Sanity checks
        x0 = np.zeros((4, ))
        solver.lambda_ = 2.
        self.assertRaises(ValueError, solver.pre, [f1, f2], x0)
        solver.lambda_ = -2.
        self.assertRaises(ValueError, solver.pre, [f1, f2], x0)
        self.assertRaises(ValueError, solver.pre, [f1, f2, f1], x0)
Exemplo n.º 3
0
    def test_solver_comparison(self):
        """
        Test that all solvers return the same and correct solution.

        """

        # Convex functions.
        y = [1, 0, 0.1, 8, -6.5, 0.2, 0.004, 0.01]
        sol = [0.75, 0, 0, 7.75, -6.25, 0, 0, 0]
        w1, w2 = .8, .4
        f1 = functions.norm_l2(y=y, lambda_=w1 / 2.)  # Smooth.
        f2 = functions.norm_l1(lambda_=w2 / 2.)       # Non-smooth.

        # Solvers.
        L = w1  # Lipschitz continuous gradient.
        step = 1. / L
        lambda_ = 0.5
        params = {'step': step, 'lambda_': lambda_}
        slvs = []
        slvs.append(solvers.forward_backward(accel=acceleration.dummy(),
                                             step=step))
        slvs.append(solvers.douglas_rachford(**params))
        slvs.append(solvers.generalized_forward_backward(**params))

        # Compare solutions.
        params = {'rtol': 1e-14, 'verbosity': 'NONE', 'maxit': 1e4}
        niters = [2, 61, 26]
        for solver, niter in zip(slvs, niters):
            x0 = np.zeros(len(y))
            ret = solvers.solve([f1, f2], x0, solver, **params)
            nptest.assert_allclose(ret['sol'], sol)
            self.assertEqual(ret['niter'], niter)
            self.assertIs(ret['sol'], x0)  # The initial value was modified.
Exemplo n.º 4
0
    def test_douglas_rachford(self):
        """
        Test douglas-rachford solver with L1-norm, L2-norm and dummy functions.

        """
        y = [4, 5, 6, 7]
        solver = solvers.douglas_rachford()
        param = {'solver': solver, 'verbosity': 'NONE'}

        # L2-norm prox and dummy prox.
        f1 = functions.norm_l2(y=y)
        f2 = functions.dummy()
        ret = solvers.solve([f1, f2], np.zeros(len(y)), **param)
        nptest.assert_allclose(ret['sol'], y)
        self.assertEqual(ret['crit'], 'RTOL')
        self.assertEqual(ret['niter'], 35)

        # L2-norm prox and L1-norm prox.
        f1 = functions.norm_l2(y=y)
        f2 = functions.norm_l1(y=y)
        ret = solvers.solve([f1, f2], np.zeros(len(y)), **param)
        nptest.assert_allclose(ret['sol'], y)
        self.assertEqual(ret['crit'], 'RTOL')
        self.assertEqual(ret['niter'], 4)

        # Sanity checks
        x0 = np.zeros((4,))
        solver.lambda_ = 2.
        self.assertRaises(ValueError, solver.pre, [f1, f2], x0)
        solver.lambda_ = -2.
        self.assertRaises(ValueError, solver.pre, [f1, f2], x0)
        self.assertRaises(ValueError, solver.pre, [f1, f2, f1], x0)
Exemplo n.º 5
0
def Experiment(iterable):
    M = 0
    Omega = np.random.permutation(N)
    x_0 = np.zeros(N)
    x_0[Omega[0:k]] = np.random.standard_normal(k)
    psi = np.ones(N)
    Psi = np.diag(psi)
    Phi = np.random.randn(n, N)
    A = np.dot(Phi, Psi)
    y = np.dot(A, x_0)
    x = np.zeros(N)
    f1 = functions.norm_l1()
    f2 = functions.proj_b2(epsilon=0, y=y, A=A, tight=False,\
    nu=np.linalg.norm(A, ord=2)**2)
    solver = solvers.douglas_rachford(step=1e-2)
    ret = solvers.solve([f1, f2], x, solver, rtol=1e-4, maxit=300)
    x = ret.get('sol')
    residual = (float(LA.norm(x - x_0, 2)) / LA.norm(x_0, 2))**2
    if residual <= tolerance:
        M += 1
    return M
Exemplo n.º 6
0
def main_tv(hparams):

    ## === Set up=== ##
    # Printer setup
    #sys.stdout = open(hparams.text_file_path, 'w')

    # Get inputs
    if hparams.image_mode == '1D':
        x_real = np.array(load_1D(hparams.path, hparams.img_name)).astype(
            np.float32)  #[4096,1]
    elif hparams.image_mode == '2D':
        x_real = np.array(load_2D(hparams.path, hparams.img_name)).astype(
            np.float32)  #[64,64]
    elif hparams.image_mode == '3D':
        x_real = np.array(
            load_img(hparams.path,
                     hparams.img_name, hparams.decoder_type)).astype(
                         np.float32)  #[178,218,3] /  [224,224,3]

    # Initialization
    #np.random.seed(7)
    sig_shape = x_real.shape[0] * x_real.shape[
        1]  #n = 4096*1 or 64*64 or 178*218 or 224*224
    random_vector = None  #initialization
    A = None  #initialization
    selection_mask = None  #initialization
    random_arr = random_flip(sig_shape)  #initialization #[n,]
    mask = None  #initialization

    # Get measurement matirx
    if hparams.model_type == 'denoising' or hparams.model_type == 'compressing':
        if hparams.type_measurements == 'random':  #compressed sensing
            if hparams.image_mode != '3D':
                A = np.random.randn(hparams.num_measurements,
                                    sig_shape).astype(np.float32)  #[m,n]
                noise_shape = [hparams.num_measurements, 1]  #[m,1]
            else:
                A = np.random.randn(int(hparams.num_measurements / 3),
                                    sig_shape).astype(np.float32)  #[m,n]
                noise_shape = [int(hparams.num_measurements / 3), 1]  #[m,1]
        elif hparams.type_measurements == 'identity':  #denoising
            A = np.identity(sig_shape).astype(np.float32)  #[n,n]
            noise_shape = [sig_shape, 1]  #[n,1]
            observ_noise = hparams.noise_level * np.random.randn(
                noise_shape[0], noise_shape[1])  #[n,1]
        elif hparams.type_measurements == 'circulant':  #compressed sensing
            if hparams.image_mode != '3D':
                random_vector = np.random.normal(size=sig_shape)  #[n,]
                selection_mask = create_A_selection(
                    sig_shape, hparams.num_measurements)  #[1,n]
            else:
                random_vector = np.random.normal(size=sig_shape)  #[n,]
                selection_mask = create_A_selection(
                    sig_shape, int(hparams.num_measurements / 3))  #[1,n]

            def circulant_np(signal_vector,
                             random_arr_p=random_arr.reshape(-1, 1),
                             random_vector_p=random_vector.reshape(-1, 1),
                             selection_mask_p=selection_mask.reshape(-1, 1)):
                #step 0: Flip
                signal_vector = signal_vector * random_arr_p  #[n,1] * [n,1] -> [n,1]
                #step 1: F^{-1} @ x
                r1 = ifft(signal_vector)  #[n,1]
                #step 2: Diag() @ F^{-1} @ x
                Ft = fft(random_vector_p)  #[n,1]
                r2 = np.multiply(r1, Ft)  #[n,1] * [n,1] -> [n,1]
                #step 3: F @ Diag() @ F^{-1} @ x
                compressive = fft(r2)  #[n,1]
                #step 4:  R_{omega} @ C_{t} @ D){epsilon}
                compressive = compressive.real  #[n,1]
                select_compressive = compressive * selection_mask_p  #[n,1] * [n,1] -> [n,1]
                return select_compressive

    elif hparams.model_type == 'inpainting':
        if hparams.image_mode == '1D':
            mask = load_mask('Masks', hparams.mask_name_1D, hparams.image_mode,
                             hparams.decoder_type)  #[n,1]
        elif hparams.image_mode == '2D' or hparams.image_mode == '3D':
            mask = load_mask('Masks', hparams.mask_name_2D, hparams.image_mode,
                             hparams.decoder_type)  #[n,n]

    ## === TV norm === ##
    if hparams.decoder_type == 'tv_norm':
        # Construct observation and perform reconstruction
        if hparams.model_type == 'inpainting':
            # measurements and observation
            g = lambda x: mask * x  #[4096,1] * [4096,1] / [178,218,3] * [178,218,3]
            y_real = g(x_real)  #[4096,1] / [178,218,3]
            # tv norm
            if hparams.image_mode == '1D':
                f1 = functions.norm_tv(dim=1)
            elif hparams.image_mode == '2D':
                f1 = functions.norm_tv(dim=2)
            elif hparams.image_mode == '3D':
                f1 = functions.norm_tv(dim=3)
            # L2 norm
            tau = hparams.tau
            f2 = functions.norm_l2(y=y_real, A=g, lambda_=tau)
            # optimisation
            solver = solvers.forward_backward(step=0.5 / tau)
            x0 = np.array(y_real)  # Make a copy to preserve im_masked.
            ret = solvers.solve([f1, f2], x0, solver,
                                maxit=3000)  #output = ret['sol']
            # output
            out_img = ret['sol']  #[4096,1] / [178,218,3]
        elif hparams.model_type == 'denoising':
            assert hparams.type_measurements == 'identity'
            if hparams.image_mode == '3D':
                out_img_list = []
                for i in range(x_real.shape[-1]):
                    # measurements and observation
                    y_real = np.matmul(A, x_real[:, :, i].reshape(
                        -1, 1)) + observ_noise  # [n,n] * [n,1] -> [n,1]
                    # tv norm
                    f1 = functions.norm_tv(dim=1)
                    # epsilon
                    N = math.sqrt(sig_shape)
                    epsilon = N * hparams.noise_level
                    # L2 ball
                    y = np.reshape(y_real, -1)  #[n,1] -> [n,]
                    f = functions.proj_b2(y=y, epsilon=epsilon)
                    f2 = functions.func()
                    # Indicator functions
                    f2._eval = lambda x: 0

                    def prox(x, step):
                        return np.reshape(f.prox(np.reshape(x, -1), 0),
                                          y_real.shape)

                    f2._prox = prox
                    # solver
                    solver = solvers.douglas_rachford(step=0.1)
                    x0 = np.array(y_real)  #[n,1]
                    ret = solvers.solve([f1, f2], x0, solver)
                    # output
                    out_img_piece = ret['sol'].reshape(
                        x_real.shape[0], x_real.shape[1])  #[178,218]
                    out_img_list.append(out_img_piece)
                out_img = np.transpose(np.array(out_img_list), (1, 2, 0))
            else:
                # measurements and observation
                y_real = np.matmul(A, x_real.reshape(
                    -1, 1)) + observ_noise  # [n,n] * [n,1] -> [n,1]
                # tv norm
                f1 = functions.norm_tv(dim=1)
                # epsilon
                N = math.sqrt(sig_shape)
                epsilon = N * hparams.noise_level
                # L2 ball
                y = np.reshape(y_real, -1)  #[n,1] -> [n,]
                f = functions.proj_b2(y=y, epsilon=epsilon)
                f2 = functions.func()
                # Indicator functions
                f2._eval = lambda x: 0

                def prox(x, step):
                    return np.reshape(f.prox(np.reshape(x, -1), 0),
                                      y_real.shape)

                f2._prox = prox
                # solver
                solver = solvers.douglas_rachford(step=0.1)
                x0 = np.array(y_real)  #[n,1]
                ret = solvers.solve([f1, f2], x0, solver)
                # output
                out_img = ret['sol']  #[n,1]
        elif hparams.model_type == 'compressing':
            assert hparams.type_measurements == 'circulant'
            if hparams.image_mode == '3D':
                out_img_list = []
                for i in range(x_real.shape[-1]):
                    # construct observation
                    g = circulant_np
                    y_real = g(x_real[:, :, i].reshape(-1, 1))  #[n,1] -> [n,1]
                    # tv norm
                    f1 = functions.norm_tv(dim=1)
                    # L2 norm
                    tau = hparams.tau
                    f2 = functions.norm_l2(y=y_real, A=g, lambda_=tau)
                    # optimisation solver
                    A_real = np.random.normal(
                        size=(int(hparams.num_measurements / 3), sig_shape))
                    step = 0.5 / np.linalg.norm(A_real, ord=2)**2
                    solver = solvers.forward_backward(
                        step=step
                    )  #solver = solvers.forward_backward(step=0.5/tau)
                    # initialisation
                    x0 = np.array(y_real)  #[n,1]
                    # output
                    ret = solvers.solve([f1, f2],
                                        x0,
                                        solver,
                                        rtol=1e-4,
                                        maxit=3000)  #output = ret['sol']
                    out_img_piece = ret['sol'].reshape(
                        x_real.shape[0], x_real.shape[1])  #[178,218]
                    out_img_list.append(out_img_piece)
                out_img = np.transpose(np.array(out_img_list), (1, 2, 0))
            else:
                # construct observation
                g = circulant_np
                y_real = g(x_real.reshape(-1, 1))  #[n,1] -> [n,1]
                # tv norm
                f1 = functions.norm_tv(dim=1)
                # L2 norm
                tau = hparams.tau
                f2 = functions.norm_l2(y=y_real, A=g, lambda_=tau)
                # optimisation solver
                A_real = np.random.normal(size=(hparams.num_measurements,
                                                sig_shape))
                step = 0.5 / np.linalg.norm(A_real, ord=2)**2
                solver = solvers.forward_backward(
                    step=step
                )  #solver = solvers.forward_backward(step=0.5/tau)
                # initialisation
                x0 = np.array(y_real)  #[n,1]
                # output
                ret = solvers.solve([f1, f2],
                                    x0,
                                    solver,
                                    rtol=1e-4,
                                    maxit=3000)  #output = ret['sol']
                out_img = ret['sol']  #[n,1]

    # ## === Lasso  wavelet === ##
    elif hparams.decoder_type == 'lasso_wavelet':
        # Construct lasso wavelet functions
        def solve_lasso(A_val, y_val, hparams):  #(n,m), (1,m)
            if hparams.lasso_solver == 'sklearn':
                lasso_est = Lasso(alpha=hparams.lmbd)
                lasso_est.fit(A_val.T, y_val.reshape(hparams.num_measurements))
                x_hat = lasso_est.coef_
                x_hat = np.reshape(x_hat, [-1])
            elif hparams.lasso_solver == 'cvxopt':
                A_mat = matrix(A_val.T)  #[m,n]
                y_mat = matrix(y_val.T)  ###
                x_hat_mat = l1regls(A_mat, y_mat)
                x_hat = np.asarray(x_hat_mat)
                x_hat = np.reshape(x_hat, [-1])  #[n, ]
            elif hparams.lasso_solver == 'pyunlocbox':
                tau = hparams.tau
                f1 = functions.norm_l1(lambda_=tau)
                f2 = functions.norm_l2(y=y_val.T, A=A_val.T)
                if hparams.model_type == 'compressing':
                    if hparams.image_mode == '3D':
                        A_real = np.random.normal(
                            size=(int(hparams.num_measurements / 3),
                                  sig_shape))
                    else:
                        A_real = np.random.normal(
                            size=(hparams.num_measurements, sig_shape))
                    step = 0.5 / np.linalg.norm(A_real, ord=2)**2
                else:
                    step = 0.5 / np.linalg.norm(A_val, ord=2)**2
                solver = solvers.forward_backward(step=step)
                x0 = np.zeros((sig_shape, 1))
                ret = solvers.solve([f1, f2],
                                    x0,
                                    solver,
                                    rtol=1e-4,
                                    maxit=3000)
                x_hat_mat = ret['sol']
                x_hat = np.asarray(x_hat_mat)
                x_hat = np.reshape(x_hat, [-1])  #[n, ]
            return x_hat

        #generate basis
        def generate_basis(size):
            """generate the basis"""
            x = np.zeros((size, size))
            coefs = pywt.wavedec2(x, 'db1')
            n_levels = len(coefs)
            basis = []
            for i in range(n_levels):
                coefs[i] = list(coefs[i])
                n_filters = len(coefs[i])
                for j in range(n_filters):
                    for m in range(coefs[i][j].shape[0]):
                        try:
                            for n in range(coefs[i][j].shape[1]):
                                coefs[i][j][m][n] = 1
                                temp_basis = pywt.waverec2(coefs, 'db1')
                                basis.append(temp_basis)
                                coefs[i][j][m][n] = 0
                        except IndexError:
                            coefs[i][j][m] = 1
                            temp_basis = pywt.waverec2(coefs, 'db1')
                            basis.append(temp_basis)
                            coefs[i][j][m] = 0
            basis = np.array(basis)
            return basis

        def wavelet_basis(path_):
            if path_ == 'Ieeg_signal':
                W_ = generate_basis(32)
                W_ = W_.reshape((1024, 1024))
            elif path_ == 'Celeb_signal':
                W_ = generate_basis(128)
                W_ = W_.reshape((16384, 16384))
            else:
                W_ = generate_basis(64)
                W_ = W_.reshape((4096, 4096))
            return W_

        def lasso_wavelet_estimator(A_val, y_val, hparams):  #(n,m), (1,m)
            W = wavelet_basis(hparams.path)  #[n,n]
            if not callable(A_val):
                WA = np.dot(W, A_val)  #[n,n] * [n,m] = [n,m]
            else:
                WA = np.array([
                    A_val(W[i, :].reshape(-1, 1)).reshape(-1)
                    for i in range(len(W))
                ])  #[n,n] -> [n,n]
            z_hat = solve_lasso(WA, y_val, hparams)  # [n, ]
            x_hat = np.dot(z_hat, W)  #[n, ] * [n,n] = [n, ]
            x_hat_max = np.abs(x_hat).max()
            x_hat = x_hat / (1.0 * x_hat_max)
            return x_hat

        # Construct inpainting masks
        def get_A_inpaint(mask_p):
            mask = mask_p.reshape(1, -1)
            A = np.eye(np.prod(mask.shape)) * np.tile(mask,
                                                      [np.prod(mask.shape), 1])
            A = np.asarray([a for a in A if np.sum(a) != 0])
            A = np.sqrt(
                sig_shape
            ) * A  # Make sure that the norm of each row of A is sig_shape
            assert all(np.abs(np.sum(A**2, 1) - sig_shape) < 1e-6)
            return A.T

        # Perofrm reconstruction
        if hparams.model_type == 'inpainting':
            # measurements and observation
            A_val = get_A_inpaint(mask)  #(n,m)
            if hparams.image_mode == '3D':
                out_img_list = []
                for i in range(x_real.shape[-1]):
                    y_real = np.matmul(x_real[:, :, i].reshape(1, -1),
                                       A_val)  #(1,m)
                    out_img_piece = lasso_wavelet_estimator(
                        A_val, y_real, hparams)
                    out_img_piece = out_img_piece.reshape(
                        x_real.shape[0], x_real.shape[1])
                    out_img_list.append(out_img_piece)
                out_img = np.transpose(np.array(out_img_list), (1, 2, 0))
            elif hparams.image_mode == '1D':
                y_real = np.matmul(x_real.reshape(1, -1), A_val)  #(1,m)
                out_img = lasso_wavelet_estimator(A_val, y_real, hparams)
                out_img = out_img.reshape(-1, 1)
        elif hparams.model_type == 'denoising':
            assert hparams.type_measurements == 'identity'
            A_val = A  #(n,n)
            if hparams.image_mode == '3D':
                out_img_list = []
                for i in range(x_real.shape[-1]):
                    y_real = x_real[:, :, i].reshape(1, -1) + observ_noise.T
                    out_img_piece = lasso_wavelet_estimator(
                        A_val, y_real, hparams)
                    out_img_piece = out_img_piece.reshape(
                        x_real.shape[0], x_real.shape[1])
                    out_img_list.append(out_img_piece)
                out_img = np.transpose(np.array(out_img_list), (1, 2, 0))
            elif hparams.image_mode == '1D':
                y_real = np.matmul(x_real.reshape(1, -1),
                                   A_val) + observ_noise.T
                out_img = lasso_wavelet_estimator(A_val, y_real, hparams)
                out_img = out_img.reshape(-1, 1)
        elif hparams.model_type == 'compressing':
            assert hparams.type_measurements == 'circulant'
            A_val = circulant_np
            if hparams.image_mode == '3D':
                out_img_list = []
                for i in range(x_real.shape[-1]):
                    y_real = A_val(x_real[:, :, i].reshape(-1, 1)).reshape(
                        1, -1)  #[n,1] -> [1,n]
                    out_img_piece = lasso_wavelet_estimator(
                        A_val, y_real, hparams)
                    out_img_piece = out_img_piece.reshape(
                        x_real.shape[0], x_real.shape[1])
                    out_img_list.append(out_img_piece)
                out_img = np.transpose(np.array(out_img_list), (1, 2, 0))
            elif hparams.image_mode == '1D':
                y_real = A_val(x_real).reshape(1, -1)  #[n,1] -> [1,n]
                out_img = lasso_wavelet_estimator(A_val, y_real, hparams)
                out_img = out_img.reshape(-1, 1)

    ## === Printer === ##
    # Compute and print measurement and l2 loss
    # if hparams.image_mode == '3D' and hparams.model_type != 'inpainting':
    #     x_real = x_real.reshape(-1,1)
    l2_losses = get_l2_loss(out_img, x_real, hparams.image_mode,
                            hparams.decoder_type)
    psnr = 10 * np.log10(1 * 1 / l2_losses)  #PSNR

    # Printer info
    if hparams.model_type == 'inpainting':
        if hparams.image_mode == '1D':
            mask_info = hparams.mask_name_1D[8:-4]
        elif hparams.image_mode == '2D' or hparams.image_mode == '3D':
            mask_info = hparams.mask_name_2D[8:-4]
        type_mea_info = 'NA'
        num_mea_info = 'NA'
        noise_level_info = 'NA'
    elif hparams.model_type == 'compressing':
        mask_info = 'NA'
        type_mea_info = hparams.type_measurements
        num_mea_info = str(hparams.num_measurements)
        noise_level_info = 'NA'
    elif hparams.model_type == 'denoising':
        mask_info = 'NA'
        type_mea_info = 'NA'
        num_mea_info = 'NA'
        noise_level_info = str(hparams.noise_level)

    # Print result
    print(
        'Final representation PSNR for img_name:{}, model_type:{}, type_mea:{}, num_mea:{}, mask:{}, decoder:{} tau:{} noise:{} is {}'
        .format(hparams.img_name, hparams.model_type, type_mea_info,
                num_mea_info, mask_info, hparams.decoder_type, hparams.tau,
                noise_level_info, psnr))
    print('END')
    print('\t')
    #sys.stdout.close()

    ## == to pd frame == ##
    if hparams.pickle == 1:
        pickle_file_path = hparams.pickle_file_path
        if not os.path.exists(pickle_file_path):
            d = {
                'img_name': [hparams.img_name],
                'model_type': [hparams.model_type],
                'type_mea': [type_mea_info],
                'num_mea': [num_mea_info],
                'mask_info': [mask_info],
                'decoder_type': [hparams.decoder_type],
                'tau': [hparams.tau],
                'noise': [noise_level_info],
                'psnr': [psnr]
            }
            df = pd.DataFrame(data=d)
            df.to_pickle(pickle_file_path)
        else:
            d = {
                'img_name': hparams.img_name,
                'model_type': hparams.model_type,
                'type_mea': type_mea_info,
                'num_mea': num_mea_info,
                'mask_info': mask_info,
                'decoder_type': hparams.decoder_type,
                'tau': hparams.tau,
                'noise': noise_level_info,
                'psnr': psnr
            }
            df = pd.read_pickle(pickle_file_path)
            df = df.append(d, ignore_index=True)
            df.to_pickle(pickle_file_path)

    ## === Save === ##
    if hparams.save == 1:
        save_out_img(out_img, 'result/', hparams.img_name,
                     hparams.decoder_type, hparams.model_type, num_mea_info,
                     mask_info, noise_level_info, hparams.image_mode)