Exemplo n.º 1
0
def simple_storage_model(request, solver):
    """
    Make a simple model with a single Input, Storage and Output.
    
    Input -> Storage -> Output
    """

    model = pywr.core.Model(start=pandas.to_datetime('2016-01-01'),
                            end=pandas.to_datetime('2016-01-05'),
                            timestep=datetime.timedelta(1),
                            solver=solver)

    inpt = Input(model, name="Input", max_flow=5.0, cost=-1)
    res = Storage(model,
                  name="Storage",
                  num_outputs=1,
                  num_inputs=1,
                  max_volume=20,
                  initial_volume=10)
    otpt = Output(model, name="Output", max_flow=8, cost=-999)

    inpt.connect(res)
    res.connect(otpt)

    return model
Exemplo n.º 2
0
def test_scenario_storage():
    """Test the behaviour of Storage nodes with multiple scenarios

    The model defined has two inflow scenarios: 5 and 10. It is expected that
    the volume in the storage node should increase at different rates in the
    two scenarios.
    """
    model = Model()

    i = Input(model, 'input', max_flow=999)
    s = Storage(model, 'storage', num_inputs=1, num_outputs=1, max_volume=1000, initial_volume=500)
    o = Output(model, 'output', max_flow=999)

    scenario_input = Scenario(model, 'Inflow', size=2)
    i.min_flow = ConstantScenarioParameter(model, scenario_input, [5.0, 10.0])

    i.connect(s)
    s.connect(o)

    s_rec = NumpyArrayStorageRecorder(model, s)

    model.run()

    assert_allclose(i.flow, [5, 10])
    assert_allclose(s_rec.data[0], [505, 510])
    assert_allclose(s_rec.data[1], [510, 520])
Exemplo n.º 3
0
def three_storage_model(request):
    """
    Make a simple model with three input, storage and output nodes. Also adds
    an `AggregatedStorage` and `AggregatedNode`.

        Input 0 -> Storage 0 -> Output 0
        Input 1 -> Storage 1 -> Output 1
        Input 2 -> Storage 2 -> Output 2


    """

    model = pywr.core.Model(
        start=pandas.to_datetime('2016-01-01'),
        end=pandas.to_datetime('2016-01-05'),
        timestep=datetime.timedelta(1),
    )

    all_res = []
    all_otpt = []

    for num in range(3):
        inpt = Input(model,
                     name="Input {}".format(num),
                     max_flow=5.0 * num,
                     cost=-1)
        res = Storage(model,
                      name="Storage {}".format(num),
                      num_outputs=1,
                      num_inputs=1,
                      max_volume=20,
                      initial_volume=10 + num)
        otpt = Output(model,
                      name="Output {}".format(num),
                      max_flow=8 + num,
                      cost=-999)

        inpt.connect(res)
        res.connect(otpt)

        all_res.append(res)
        all_otpt.append(otpt)

    AggregatedStorage(model, name='Total Storage', storage_nodes=all_res)
    AggregatedNode(model, name='Total Output', nodes=all_otpt)
    return model
Exemplo n.º 4
0
def test_scaled_profile_nested_load(model):
    """ Test `ScaledProfileParameter` loading with `AggregatedParameter` """
    model.timestepper.delta = 15

    s = Storage(model, 'Storage', max_volume=100.0, num_outputs=0)
    d = Output(model, 'Link')
    data = {
        'type': 'scaledprofile',
        'scale': 50.0,
        'profile': {
            'type':
            'aggregated',
            'agg_func':
            'product',
            'parameters': [{
                'type': 'monthlyprofile',
                'values': [0.5] * 12
            }, {
                'type':
                'monthlyprofilecontrolcurve',
                'control_curves': [0.8, 0.6],
                'values': [[1.0] * 12, [0.7] * np.arange(12), [0.3] * 12],
                'storage_node':
                'Storage'
            }]
        }
    }

    s.connect(d)

    d.max_flow = p = load_parameter(model, data)

    @assert_rec(model, p)
    def expected_func(timestep, scenario_index):
        if s.initial_volume == 90:
            return 50.0 * 0.5 * 1.0
        elif s.initial_volume == 70:
            return 50.0 * 0.5 * 0.7 * (timestep.month - 1)
        else:
            return 50.0 * 0.5 * 0.3

    for initial_volume in (90, 70, 30):
        s.initial_volume = initial_volume
        model.run()
Exemplo n.º 5
0
def test_scaled_profile_nested_load(model):
    """ Test `ScaledProfileParameter` loading with `AggregatedParameter` """
    model.timestepper.delta = 15

    s = Storage(model,
                'Storage',
                max_volume=100.0,
                initial_volume=50.0,
                num_outputs=0)
    d = Output(model, 'Link')
    data = {
        'type': 'scaledprofile',
        'scale': 50.0,
        'profile': {
            'type':
            'aggregated',
            'agg_func':
            'product',
            'parameters': [{
                'type': 'monthlyprofile',
                'values': [0.5] * 12
            }, {
                'type': 'constant',
                'value': 1.5,
            }]
        }
    }

    s.connect(d)

    d.max_flow = p = load_parameter(model, data)

    @assert_rec(model, p)
    def expected_func(timestep, scenario_index):
        return 50.0 * 0.5 * 1.5

    model.run()
Exemplo n.º 6
0
def create_model(harmonic=True):
    # import flow timeseries for catchments
    flow = pd.read_csv(os.path.join('data', 'thames_stochastic_flow.gz'))

    flow['Date'] = flow['Date'].apply(pd.to_datetime)
    flow.set_index('Date', inplace=True)
    # resample input to weekly average
    flow = flow.resample('7D', how='mean')

    model = InspyredOptimisationModel(
        solver='glpk',
        start=flow.index[0],
        end=flow.index[365*10],  # roughly 10 years
        timestep=datetime.timedelta(7),  # weekly time-step
    )

    flow_parameter = ArrayIndexedParameter(model, flow['flow'].values)

    catchment1 = Input(model, 'catchment1', min_flow=flow_parameter, max_flow=flow_parameter)
    catchment2 = Input(model, 'catchment2', min_flow=flow_parameter, max_flow=flow_parameter)

    reservoir1 = Storage(model, 'reservoir1', min_volume=3000, max_volume=20000, initial_volume=16000)
    reservoir2 = Storage(model, 'reservoir2', min_volume=3000, max_volume=20000, initial_volume=16000)

    if harmonic:
        control_curve = AnnualHarmonicSeriesParameter(model, 0.5, [0.5], [0.0], mean_upper_bounds=1.0, amplitude_upper_bounds=1.0)
    else:
        control_curve = MonthlyProfileParameter(model, np.array([0.0]*12), lower_bounds=0.0, upper_bounds=1.0)

    control_curve.is_variable = True
    controller = ControlCurveParameter(model, reservoir1, control_curve, [0.0, 10.0])
    transfer = Link(model, 'transfer', max_flow=controller, cost=-500)

    demand1 = Output(model, 'demand1', max_flow=45.0, cost=-101)
    demand2 = Output(model, 'demand2', max_flow=20.0, cost=-100)

    river1 = Link(model, 'river1')
    river2 = Link(model, 'river2')

    # compensation flows from reservoirs
    compensation1 = Link(model, 'compensation1', max_flow=5.0, cost=-9999)
    compensation2 = Link(model, 'compensation2', max_flow=5.0, cost=-9998)

    terminator = Output(model, 'terminator', cost=1.0)

    catchment1.connect(reservoir1)
    catchment2.connect(reservoir2)
    reservoir1.connect(demand1)
    reservoir2.connect(demand2)
    reservoir2.connect(transfer)
    transfer.connect(reservoir1)
    reservoir1.connect(river1)
    reservoir2.connect(river2)
    river1.connect(terminator)
    river2.connect(terminator)

    reservoir1.connect(compensation1)
    reservoir2.connect(compensation2)
    compensation1.connect(terminator)
    compensation2.connect(terminator)

    r1 = TotalDeficitNodeRecorder(model, demand1)
    r2 = TotalDeficitNodeRecorder(model, demand2)
    r3 = AggregatedRecorder(model, [r1, r2], agg_func="mean")
    r3.is_objective = 'minimise'
    r4 = TotalFlowNodeRecorder(model, transfer)
    r4.is_objective = 'minimise'

    return model