Exemplo n.º 1
0
def _create_job(config, internal_storage, executor_id, job_id, func, data, runtime_meta,
                runtime_memory=None, extra_env=None, invoke_pool_threads=128, include_modules=[],
                exclude_modules=[], original_func_name=None, remote_invocation=False,
                original_total_tasks=None, execution_timeout=EXECUTION_TIMEOUT):
    """
    :param func: the function to map over the data
    :param iterdata: An iterable of input data
    :param extra_env: Additional environment variables for CF environment. Default None.
    :param extra_meta: Additional metadata to pass to CF. Default None.
    :param remote_invocation: Enable remote invocation. Default False.
    :param invoke_pool_threads: Number of threads to use to invoke.
    :param data_all_as_one: upload the data as a single object. Default True
    :param overwrite_invoke_args: Overwrite other args. Mainly used for testing.
    :param exclude_modules: Explicitly keep these modules from pickled dependencies.
    :param original_func_name: Name of the function to invoke.
    :return: A list with size `len(iterdata)` of futures for each job
    :rtype:  list of futures.
    """
    log_level = os.getenv('CB_LOG_LEVEL')

    runtime_name = config['pywren']['runtime']
    if runtime_memory is None:
        runtime_memory = config['pywren']['runtime_memory']

    if original_func_name:
        func_name = original_func_name
    else:
        func_name = func.__name__

    if extra_env is not None:
        extra_env = utils.convert_bools_to_string(extra_env)

    if not data:
        return []

    host_job_meta = {}
    job_description = {}

    job_description['runtime_name'] = runtime_name
    job_description['runtime_memory'] = int(runtime_memory)
    job_description['execution_timeout'] = execution_timeout
    job_description['func_name'] = func_name
    job_description['extra_env'] = extra_env
    job_description['total_calls'] = len(data)
    job_description['invoke_pool_threads'] = invoke_pool_threads
    job_description['job_id'] = job_id
    job_description['remote_invocation'] = remote_invocation
    job_description['original_total_calls'] = original_total_tasks

    log_msg = 'ExecutorID {} | JobID {} - Serializing function and data'.format(executor_id, job_id)
    logger.debug(log_msg)

    # pickle func and all data (to capture module dependencies)
    exclude_modules.extend(config['pywren'].get('exclude_modules', []))
    include_modules_cfg = config['pywren'].get('include_modules', [])
    if include_modules is not None and include_modules_cfg is not None:
        include_modules.extend(include_modules_cfg)
    serializer = SerializeIndependent(runtime_meta['preinstalls'])
    func_and_data_ser, mod_paths = serializer([func] + data, include_modules, exclude_modules)

    func_str = func_and_data_ser[0]
    data_strs = func_and_data_ser[1:]
    data_size_bytes = sum(len(x) for x in data_strs)

    host_job_meta['agg_data'] = False
    host_job_meta['data_size_bytes'] = data_size_bytes

    log_msg = 'ExecutorID {} | JobID {} - Uploading function and data'.format(executor_id, job_id)
    logger.info(log_msg)
    if not log_level:
        print(log_msg, end=' ')

    if data_size_bytes < MAX_AGG_DATA_SIZE:
        agg_data_key = create_agg_data_key(internal_storage.prefix, executor_id, job_id)
        job_description['data_key'] = agg_data_key
        agg_data_bytes, agg_data_ranges = _agg_data(data_strs)
        job_description['data_ranges'] = agg_data_ranges
        agg_upload_time = time.time()
        internal_storage.put_data(agg_data_key, agg_data_bytes)
        host_job_meta['agg_data'] = True
        host_job_meta['data_upload_time'] = time.time() - agg_upload_time
        host_job_meta['data_upload_timestamp'] = time.time()
    else:
        log_msg = ('ExecutorID {} | JobID {} - Total data exceeded '
                   'maximum size of {} bytes'.format(executor_id, job_id, MAX_AGG_DATA_SIZE))
        raise Exception(log_msg)

    module_data = create_module_data(mod_paths)
    # Create func and upload
    host_job_meta['func_name'] = func_name
    func_module_str = pickle.dumps({'func': func_str, 'module_data': module_data}, -1)
    host_job_meta['func_module_bytes'] = len(func_module_str)

    func_upload_time = time.time()
    func_key = create_func_key(internal_storage.prefix, executor_id, job_id)
    job_description['func_key'] = func_key
    internal_storage.put_func(func_key, func_module_str)
    host_job_meta['func_upload_time'] = time.time() - func_upload_time
    host_job_meta['func_upload_timestamp'] = time.time()

    if not log_level:
        func_and_data_size = utils.sizeof_fmt(host_job_meta['func_module_bytes']+host_job_meta['data_size_bytes'])
        log_msg = '- Total: {}'.format(func_and_data_size)
        print(log_msg)

    job_description['host_job_meta'] = host_job_meta

    return job_description
Exemplo n.º 2
0
    def _map(self, func, iterdata, extra_env=None, extra_meta=None, invoke_pool_threads=128,
             data_all_as_one=True, overwrite_invoke_args=None, exclude_modules=None,
             original_func_name=None, remote_invocation=False, original_iterdata_len=None,
             job_max_runtime=wrenconfig.RUNTIME_TIMEOUT):
        """
        :param func: the function to map over the data
        :param iterdata: An iterable of input data
        :param extra_env: Additional environment variables for CF environment. Default None.
        :param extra_meta: Additional metadata to pass to CF. Default None.
        :param remote_invocation: Enable remote invocation. Default False.
        :param invoke_pool_threads: Number of threads to use to invoke.
        :param data_all_as_one: upload the data as a single object. Default True
        :param overwrite_invoke_args: Overwrite other args. Mainly used for testing.
        :param exclude_modules: Explicitly keep these modules from pickled dependencies.
        :param original_func_name: Name of the function to invoke.
        :return: A list with size `len(iterdata)` of futures for each job
        :rtype:  list of futures.
        """
        if original_func_name:
            func_name = original_func_name
        else:
            func_name = func.__name__

        data = wrenutil.iterdata_as_list(iterdata)

        if extra_env is not None:
            extra_env = wrenutil.convert_bools_to_string(extra_env)

        if not data:
            return []

        if self.map_item_limit is not None and len(data) > self.map_item_limit:
            raise ValueError("len(data) ={}, exceeding map item limit of {}"
                             "consider mapping over a smaller"
                             "number of items".format(len(data),
                                                      self.map_item_limit))

        # This allows multiple parameters in functions
        data = wrenutil.verify_args(func, data)

        callgroup_id = wrenutil.create_callgroup_id()

        host_job_meta = {}

        log_msg = 'Executor ID {} Serializing function and data'.format(self.executor_id)
        logger.debug(log_msg)
        # pickle func and all data (to capture module dependencies)
        func_and_data_ser, mod_paths = self.serializer([func] + data)

        func_str = func_and_data_ser[0]
        data_strs = func_and_data_ser[1:]
        data_size_bytes = sum(len(x) for x in data_strs)

        agg_data_key = None
        host_job_meta['agg_data'] = False
        host_job_meta['data_size_bytes'] = data_size_bytes

        log_msg = 'Executor ID {} Uploading function and data'.format(self.executor_id)
        logger.info(log_msg)
        if not self.log_level:
            print(log_msg, end=' ')

        if data_size_bytes < wrenconfig.MAX_AGG_DATA_SIZE and data_all_as_one:
            agg_data_key = create_agg_data_key(self.internal_storage.prefix, self.executor_id, callgroup_id)
            agg_data_bytes, agg_data_ranges = self.agg_data(data_strs)
            agg_upload_time = time.time()
            self.internal_storage.put_data(agg_data_key, agg_data_bytes)
            host_job_meta['agg_data'] = True
            host_job_meta['data_upload_time'] = time.time() - agg_upload_time
            host_job_meta['data_upload_timestamp'] = time.time()
        else:
            log_msg = ('Executor ID {} Total data exceeded '
                       'maximum size of {} bytes'.format(self.executor_id,
                                                         wrenconfig.MAX_AGG_DATA_SIZE))
            logger.warning(log_msg)

        if exclude_modules:
            for module in exclude_modules:
                for mod_path in list(mod_paths):
                    if module in mod_path and mod_path in mod_paths:
                        mod_paths.remove(mod_path)

        module_data = create_mod_data(mod_paths)
        # Create func and upload
        func_module_str = pickle.dumps({'func': func_str, 'module_data': module_data}, -1)
        host_job_meta['func_module_bytes'] = len(func_module_str)

        func_upload_time = time.time()
        func_key = create_func_key(self.internal_storage.prefix, self.executor_id, callgroup_id)
        self.internal_storage.put_func(func_key, func_module_str)
        host_job_meta['func_upload_time'] = time.time() - func_upload_time
        host_job_meta['func_upload_timestamp'] = time.time()

        if not self.log_level:
            func_and_data_size = wrenutil.sizeof_fmt(host_job_meta['func_module_bytes']+host_job_meta['data_size_bytes'])
            log_msg = '- Total: {}'.format(func_and_data_size)
            print(log_msg)

        def invoke(data_str, executor_id, callgroup_id, call_id, func_key,
                   host_job_meta, agg_data_key=None, data_byte_range=None):
            data_key, output_key, status_key = create_keys(self.internal_storage.prefix,
                                                           executor_id, callgroup_id, call_id)
            host_job_meta['job_invoke_timestamp'] = time.time()

            if agg_data_key is None:
                data_upload_time = time.time()
                self.internal_storage.put_data(data_key, data_str)
                data_upload_time = time.time() - data_upload_time
                host_job_meta['data_upload_time'] = data_upload_time
                host_job_meta['data_upload_timestamp'] = time.time()

                data_key = data_key
            else:
                data_key = agg_data_key

            return self.invoke_with_keys(func_key, data_key,
                                         output_key, status_key,
                                         executor_id, callgroup_id,
                                         call_id, extra_env,
                                         extra_meta, data_byte_range,
                                         host_job_meta.copy(),
                                         job_max_runtime,
                                         overwrite_invoke_args=overwrite_invoke_args)

        N = len(data)
        call_futures = []
        if remote_invocation and original_iterdata_len > 1:
            log_msg = 'Executor ID {} Starting {} remote invocation function: Spawning {}() - Total: {} activations'.format(self.executor_id, N, func_name,
                                                                                                                            original_iterdata_len)
        else:
            log_msg = 'Executor ID {} Starting function invocation: {}() - Total: {} activations'.format(self.executor_id, func_name, N)
        logger.info(log_msg)
        if not self.log_level:
            print(log_msg)

        with ThreadPoolExecutor(max_workers=invoke_pool_threads) as executor:
            for i in range(N):
                call_id = "{:05d}".format(i)

                data_byte_range = None
                if agg_data_key is not None:
                    data_byte_range = agg_data_ranges[i]

                future = executor.submit(invoke, data_strs[i], self.executor_id,
                                         callgroup_id, call_id, func_key,
                                         host_job_meta.copy(),
                                         agg_data_key,
                                         data_byte_range)

                call_futures.append(future)

        res = [ft.result() for ft in call_futures]

        return res
Exemplo n.º 3
0
def _create_job(config,
                internal_storage,
                executor_id,
                job_id,
                func,
                data,
                runtime_meta,
                runtime_memory=None,
                extra_env=None,
                invoke_pool_threads=128,
                include_modules=[],
                exclude_modules=[],
                execution_timeout=None,
                job_created_timestamp=None):
    """
    :param func: the function to map over the data
    :param iterdata: An iterable of input data
    :param extra_env: Additional environment variables for CF environment. Default None.
    :param extra_meta: Additional metadata to pass to CF. Default None.
    :param remote_invocation: Enable remote invocation. Default False.
    :param invoke_pool_threads: Number of threads to use to invoke.
    :param data_all_as_one: upload the data as a single object. Default True
    :param overwrite_invoke_args: Overwrite other args. Mainly used for testing.
    :param exclude_modules: Explicitly keep these modules from pickled dependencies.
    :return: A list with size `len(iterdata)` of futures for each job
    :rtype:  list of futures.
    """
    log_level = os.getenv('PYWREN_LOGLEVEL')

    runtime_name = config['pywren']['runtime']
    if runtime_memory is None:
        runtime_memory = config['pywren']['runtime_memory']

    ext_env = {} if extra_env is None else extra_env.copy()
    if ext_env:
        ext_env = utils.convert_bools_to_string(ext_env)
        logger.debug("Extra environment vars {}".format(ext_env))

    if not data:
        return []

    if execution_timeout is None:
        execution_timeout = config['pywren']['runtime_timeout'] - 5

    job_description = {}
    job_description['runtime_name'] = runtime_name
    job_description['runtime_memory'] = int(runtime_memory)
    job_description['execution_timeout'] = execution_timeout
    job_description['function_name'] = func.__name__
    job_description['extra_env'] = ext_env
    job_description['total_calls'] = len(data)
    job_description['invoke_pool_threads'] = invoke_pool_threads
    job_description['executor_id'] = executor_id
    job_description['job_id'] = job_id

    exclude_modules_cfg = config['pywren'].get('exclude_modules', [])
    include_modules_cfg = config['pywren'].get('include_modules', [])

    exc_modules = set()
    inc_modules = set()
    if exclude_modules_cfg:
        exc_modules.update(exclude_modules_cfg)
    if exclude_modules:
        exc_modules.update(exclude_modules)
    if include_modules_cfg is not None:
        inc_modules.update(include_modules_cfg)
    if include_modules_cfg is None and not include_modules:
        inc_modules = None
    if include_modules is not None and include_modules:
        inc_modules.update(include_modules)
    if include_modules is None:
        inc_modules = None

    host_job_meta = {'job_created_timestamp': job_created_timestamp}

    logger.debug(
        'ExecutorID {} | JobID {} - Serializing function and data'.format(
            executor_id, job_id))
    serializer = SerializeIndependent(runtime_meta['preinstalls'])
    func_and_data_ser, mod_paths = serializer([func] + data, inc_modules,
                                              exc_modules)
    data_strs = func_and_data_ser[1:]
    data_size_bytes = sum(len(x) for x in data_strs)
    module_data = create_module_data(mod_paths)
    func_str = func_and_data_ser[0]
    func_module_str = pickle.dumps(
        {
            'func': func_str,
            'module_data': module_data
        }, -1)
    func_module_size_bytes = len(func_module_str)
    total_size = utils.sizeof_fmt(data_size_bytes + func_module_size_bytes)

    host_job_meta['data_size_bytes'] = data_size_bytes
    host_job_meta['func_module_size_bytes'] = func_module_size_bytes

    if 'data_limit' in config['pywren']:
        data_limit = config['pywren']['data_limit']
    else:
        data_limit = MAX_AGG_DATA_SIZE

    if data_limit and data_size_bytes > data_limit * 1024**2:
        log_msg = (
            'ExecutorID {} | JobID {} - Total data exceeded maximum size '
            'of {}'.format(executor_id, job_id,
                           sizeof_fmt(data_limit * 1024**2)))
        raise Exception(log_msg)

    log_msg = ('ExecutorID {} | JobID {} - Uploading function and data '
               '- Total: {}'.format(executor_id, job_id, total_size))
    print(log_msg) if not log_level else logger.info(log_msg)
    # Upload data
    data_key = create_agg_data_key(JOBS_PREFIX, executor_id, job_id)
    job_description['data_key'] = data_key
    data_bytes, data_ranges = utils.agg_data(data_strs)
    job_description['data_ranges'] = data_ranges
    data_upload_time = time.time()
    internal_storage.put_data(data_key, data_bytes)
    host_job_meta['data_upload_time'] = time.time() - data_upload_time
    host_job_meta['data_upload_timestamp'] = time.time()
    # Upload function and modules
    func_upload_time = time.time()
    func_key = create_func_key(JOBS_PREFIX, executor_id, job_id)
    job_description['func_key'] = func_key
    internal_storage.put_func(func_key, func_module_str)
    host_job_meta['func_upload_time'] = time.time() - func_upload_time
    host_job_meta['func_upload_timestamp'] = time.time()

    job_description['metadata'] = host_job_meta

    return job_description