Exemplo n.º 1
0
def test_nonlocal_sum():
    H = LocalSpace(hs_name(), dimension=5)
    a = Create(hs=H).adjoint()
    H2 = LocalSpace(hs_name(), basis=("e", "g", "h"))
    sigma = LocalSigma('g', 'e', hs=H2)
    assert convert_to_qutip(a + sigma)**2 == convert_to_qutip(
        (a + sigma) * (a + sigma))
Exemplo n.º 2
0
def disjunct_commutative_test_data():
    A1 = OperatorSymbol("A", hs=1)
    B1 = OperatorSymbol("B", hs=1)
    C1 = OperatorSymbol("C", hs=1)
    A2 = OperatorSymbol("A", hs=2)
    B2 = OperatorSymbol("B", hs=2)
    A3 = OperatorSymbol("A", hs=3)
    B4 = OperatorSymbol("B", hs=4)
    tr_A1 = tr(A1, over_space=1)
    tr_A2 = tr(A2, over_space=2)
    A1_m = OperatorSymbol("A", hs=LocalSpace(1, order_index=2))
    B1_m = OperatorSymbol("B", hs=LocalSpace(1, order_index=2))
    B2_m = OperatorSymbol("B", hs=LocalSpace(2, order_index=1))
    ket_0 = BasisKet(0, hs=1)
    ket_1 = BasisKet(1, hs=1)
    ketbra = KetBra(ket_0, ket_1)
    braket = BraKet(ket_1, ket_1)
    # fmt: off
    return [
        ([B2, B1, A1], [B1, A1, B2]),
        ([B2_m, B1_m, A1_m], [B2_m, B1_m, A1_m]),
        ([B1_m, A1_m, B2_m], [B2_m, B1_m, A1_m]),
        ([B1, A2, C1, tr_A2], [tr_A2, B1, C1, A2]),
        ([A1, B1 + B2], [A1, B1 + B2]),
        ([B1 + B2, A1], [B1 + B2, A1]),
        ([A3 + B4, A1 + A2], [A1 + A2, A3 + B4]),
        ([A1 + A2, A3 + B4], [A1 + A2, A3 + B4]),
        ([B4 + A3, A2 + A1], [A1 + A2, A3 + B4]),
        ([tr_A2, tr_A1], [tr_A1, tr_A2]),
        ([A2, ketbra, A1], [ketbra, A1, A2]),
        ([A2, braket, A1], [braket, A1, A2]),
    ]
Exemplo n.º 3
0
def test_substitute_sub_expr(H_JC):
    """Test that we can replace non-atomic sub-expressions"""
    hil_a = LocalSpace('A')
    hil_b = LocalSpace('B')
    omega_a, omega_b, g = symbols('omega_a, omega_b, g')
    a = Destroy(hs=hil_a)
    a_dag = a.dag()
    b = Destroy(hs=hil_b)
    b_dag = b.dag()
    n_op_a = OperatorSymbol('n', hs=hil_a)
    n_op_b = OperatorSymbol('n', hs=hil_b)
    x_op = OperatorSymbol('x', hs=H_JC.space)
    mapping = {
        a_dag * a: n_op_a,
        b_dag * b: n_op_b,
        (a_dag * b + b_dag * a): x_op + x_op.dag(),
    }
    H2_expected = (omega_a * n_op_a + omega_b * n_op_b + 2 * g *
                   (x_op + x_op.dag()))

    H2 = H_JC.substitute(mapping)
    assert H2 == H2_expected

    H2 = substitute(H_JC, mapping)
    assert H2 == H2_expected
Exemplo n.º 4
0
def test_symbol():
    expN = OperatorSymbol("expN", hs=1)
    hs1 = LocalSpace("sym1", dimension=10)
    hs2 = LocalSpace("sym2", dimension=5)
    N = Create(hs=hs1) * Destroy(hs=hs1)

    M = Create(hs=hs2) * Destroy(hs=hs2)

    converter1 = {expN: convert_to_qutip(N).expm()}
    expNq = convert_to_qutip(expN, mapping=converter1)

    assert (np.linalg.norm(expNq.data.toarray() -
                           (convert_to_qutip(N).expm().data.toarray())) < 1e-8)

    expNMq = convert_to_qutip(expN * M, mapping=converter1)

    assert (np.linalg.norm(expNMq.data.toarray() - (qutip.tensor(
        convert_to_qutip(N).expm(), convert_to_qutip(M)).data.toarray())) <
            1e-8)

    converter2 = {expN: lambda expr: convert_to_qutip(N).expm()}
    expNq = convert_to_qutip(expN, mapping=converter2)

    assert (np.linalg.norm(expNq.data.toarray() -
                           (convert_to_qutip(N).expm().data.toarray())) < 1e-8)

    expNMq = convert_to_qutip(expN * M, mapping=converter1)

    assert (np.linalg.norm(expNMq.data.toarray() - (qutip.tensor(
        convert_to_qutip(N).expm(), convert_to_qutip(M)).data.toarray())) <
            1e-8)
Exemplo n.º 5
0
def test_finditer():
    h1 = LocalSpace("h1")
    a = OperatorSymbol("a", hs=h1)
    b = OperatorSymbol("b", hs=h1)
    c = OperatorSymbol("c", hs=h1)
    h1_custom = LocalSpace("h1", local_identifiers={'Create': 'c'})
    c_local = Create(hs=h1_custom)

    expr = 2 * (a * b * c - b * c * a + a * b)
    pat = wc('sym', head=OperatorSymbol)
    for m in pat.finditer(expr):
        assert 'sym' in m
    matches = list(pat.finditer(expr))
    assert len(matches) == 8
    op_symbols = [m['sym'] for m in matches]
    assert set(op_symbols) == {a, b, c}

    op = wc(head=Operator)
    three_factors = pattern(OperatorTimes, op, op, op).findall(expr)
    assert three_factors == [a * b * c, b * c * a]
    assert len(list(pattern(LocalOperator).finditer(expr))) == 0
    assert (
        len(
            list(
                pattern(LocalOperator).finditer(expr.substitute({c: c_local}))
            )
        )
        == 2
    )
Exemplo n.º 6
0
def test_tensor_product():
    H = LocalSpace(hs_name(), dimension=5)
    a = Create(hs=H).adjoint()
    H2 = LocalSpace(hs_name(), basis=("e", "g", "h"))
    sigma = LocalSigma('g', 'e', hs=H2)
    assert convert_to_qutip(sigma * a) == qutip.tensor(convert_to_qutip(a),
                                                       convert_to_qutip(sigma))
 def testHilbertSpace(self):
     h1 = LocalSpace("h1")
     h2 = LocalSpace("h2")
     a = SuperOperatorSymbol("a", hs=h1)
     b = SuperOperatorSymbol("b", hs=h2)
     assert a.space == h1
     assert (a * b).space == h1 * h2
Exemplo n.º 8
0
def test_instantiate_with_basis():
    """Test that a local space can be instantiated with an explicit basis"""
    hs1 = LocalSpace('1', basis=(0, 1))
    assert hs1.dimension == 2
    assert hs1.basis_labels == ('0', '1')
    hs1 = LocalSpace('1', basis=['g', 'e'])
    assert hs1.dimension == 2
    assert hs1.basis_labels == ('g', 'e')
 def testAdditionToSuperOperator(self):
     h1 = LocalSpace("h1")
     h2 = LocalSpace("h2")
     a = SuperOperatorSymbol("a", hs=h1)
     b = SuperOperatorSymbol("b", hs=h2)
     assert a + b == b + a
     assert a + b == SuperOperatorPlus(a, b)
     assert (a + b).space == h1 * h2
Exemplo n.º 10
0
def test_substitute_str(H_JC):
    """Test that we can substitute e.g. label strings"""
    H2 = H_JC.substitute({'A': '1', 'B': '2'})
    hs_mapping = {
        LocalSpace('A'): LocalSpace('1'),
        LocalSpace('B'): LocalSpace('2'),
    }
    assert H2 == H_JC.substitute(hs_mapping)
Exemplo n.º 11
0
def test_custom_localspace_identifier_hash():
    """Test hashes for expressions with different local_identifiers for their
    Hilbert spaces have different hashes"""
    hs1 = LocalSpace(1)
    hs1_custom = LocalSpace(1, local_identifiers={'Destroy': 'b'})
    assert hash(hs1) != hash(hs1_custom)
    a = Destroy(hs=hs1)
    b = Destroy(hs=hs1_custom)
    assert hash(a) != hash(b)
Exemplo n.º 12
0
def test_commutator_hs():
    """Test that commutator is in the correct Hilbert space"""
    hs1 = LocalSpace("1")
    hs2 = LocalSpace("2")
    A = OperatorSymbol('A', hs=hs1)
    B = OperatorSymbol('B', hs=hs2)
    C = OperatorSymbol('C', hs=hs2)
    assert Commutator.create(B, C).space == hs2
    assert Commutator.create(B, A + C).space == hs1 * hs2
Exemplo n.º 13
0
def test_dimension():
    h1 = LocalSpace("h1", dimension=10)
    h2 = LocalSpace("h2", dimension=20)
    h3 = LocalSpace("h3")
    h4 = LocalSpace("h4", dimension=100)

    assert (h1 * h2).dimension == h1.dimension * h2.dimension
    with pytest.raises(BasisNotSetError):
        h3.dimension
    assert h4.dimension == 100
Exemplo n.º 14
0
def test_hilbertspace_free_symbols():
    """Test that Hilbert spaces with an indexed name return the index symbol in
    free_symbols"""
    i, j = symbols('i, j', cls=IdxSym)
    assert LocalSpace(1).free_symbols == set()
    hs_i = LocalSpace(StrLabel(i))
    hs_j = LocalSpace(StrLabel(j))
    assert hs_i.free_symbols == {i}
    assert hs_j.free_symbols == {j}
    assert (hs_i * hs_j).free_symbols == {i, j}
    def testZeroOne(self):
        h1 = LocalSpace("h1")
        h2 = LocalSpace("h2")
        a = OperatorSymbol("a", hs=h1)
        B = SuperOperatorSymbol("B", hs=h2)
        z = ZeroSuperOperator
        one = IdentitySuperOperator

        assert one * a == a
        assert z * a == ZeroOperator
Exemplo n.º 16
0
def test_product_space_order():
    H1 = LocalSpace(1)
    H2 = LocalSpace('2')
    assert H1 * H2 == H2 * H1
    assert (H1 * H2).operands == (H1, H2)

    H1 = LocalSpace(1)
    H2 = LocalSpace('2', order_index=2)
    H3 = LocalSpace(3, order_index=1)
    assert (H1 * H2 * H3).operands == (H3, H2, H1)
Exemplo n.º 17
0
def test_op_product_space():
    """Test that a product of operators has the correct Hilbert space"""
    a = Destroy(hs=1)
    b = Destroy(hs=2)
    p = a * b
    assert p.space == ProductSpace(LocalSpace(1), LocalSpace(2))
    assert not p.space.has_basis

    hs1 = LocalSpace(1, dimension=3)
    a = a.substitute({LocalSpace(1): hs1})
    p = a * b
    assert p.space == ProductSpace(hs1, LocalSpace(2))
    assert not p.space.has_basis

    hs2 = LocalSpace(2, dimension=2)
    b = b.substitute({LocalSpace(2): hs2})
    p = a * b
    ps = ProductSpace(hs1, hs2)
    assert p.space == ps
    assert p.space.dimension == 6
    assert p.space.basis_labels == ('0,0', '0,1', '1,0', '1,1', '2,0', '2,1')

    hs1_2 = LocalSpace(1, basis=('g', 'e'))
    hs2_2 = LocalSpace(2, basis=('g', 'e'))
    p = p.substitute({hs1: hs1_2, hs2: hs2_2})
    assert p.space.dimension == 4
    assert p.space.basis_labels == ('g,g', 'g,e', 'e,g', 'e,e')

    b = b.substitute({hs2: hs1})
    p = a * b
    assert p.space == hs1
    assert p.space.dimension == 3
    assert p.space.basis_labels == ('0', '1', '2')
Exemplo n.º 18
0
def test_disjunct_hs():
    """Test that commutator of objects in disjunt Hilbert spaces is zero"""
    hs1 = LocalSpace("1")
    hs2 = LocalSpace("2")
    alpha, beta = symbols('alpha, beta')
    A = OperatorSymbol('A', hs=hs1)
    B = OperatorSymbol('B', hs=hs2)
    assert Commutator.create(A, B) == ZeroOperator
    assert Commutator.create(alpha, beta) == ZeroOperator
    assert Commutator.create(alpha, B) == ZeroOperator
    assert Commutator.create(A, beta) == ZeroOperator
Exemplo n.º 19
0
def H_JC():
    hil_a = LocalSpace('A')
    hil_b = LocalSpace('B')
    a = Destroy(hs=hil_a)
    a_dag = a.dag()
    b = Destroy(hs=hil_b)
    b_dag = b.dag()
    omega_a, omega_b, g = symbols('omega_a, omega_b, g')
    H = (omega_a * a_dag * a + omega_b * b_dag * b + 2 * g *
         (a_dag * b + b_dag * a))
    return H
Exemplo n.º 20
0
def test_tensor_key():
    hs_mech = LocalSpace('m', dimension=5)
    hs_opt = LocalSpace('o', dimension=5)
    hs = hs_mech * hs_opt
    ket00 = hs.basis_state(0)
    ket0m = hs_mech.basis_state(0)
    ket0o = hs_opt.basis_state(0)
    qutip_ket00 = convert_to_qutip(ket00)
    qutip_ket0m = convert_to_qutip(ket0m)
    qutip_ket0o = convert_to_qutip(ket0o)
    expected = qutip.tensor(qutip_ket0m, qutip_ket0o)
    assert (qutip_ket00 - expected).norm() < 1e-15
Exemplo n.º 21
0
def test_basis_change():
    """Test that we can change the basis of an Expression's Hilbert space
    through substitution"""
    a = Destroy(hs=1)
    assert a.space == LocalSpace('1')
    assert not a.space.has_basis
    subs = {LocalSpace('1'): LocalSpace('1', basis=(-1, 0, 1))}
    b = a.substitute(subs)
    assert str(a) == str(b)
    assert a != b
    assert b.space.dimension == 3
    assert b.space.basis_labels == ('-1', '0', '1')
 def testSPreSPostRules(self):
     h1 = LocalSpace("h1")
     h2 = LocalSpace("h2")
     d = OperatorSymbol("d", hs=h1)
     e = OperatorSymbol("e", hs=h1)
     dpre = SPre(d)
     epre = SPre(e)
     dpost = SPost(d)
     epost = SPost(e)
     assert dpre * epre == SPre(d * e)
     assert dpost * epost == SPost(e * d)
     assert dpost * epre == SPre(e) * SPost(d)
Exemplo n.º 23
0
def test_space_ordering():
    h1 = LocalSpace("h1")
    h2 = LocalSpace("h2")
    h3 = LocalSpace("h3")

    assert h1 <= h1
    assert h1 <= (h1 * h2)
    assert not (h1 <= h2)
    assert not (h1 < h1)
    assert TrivialSpace < h1 < FullSpace
    assert h1 >= h1
    assert h1 * h2 > h2
    assert not (h1 * h2 > h3)
    def testOrdering(self):
        h1 = LocalSpace("h1")
        h2 = LocalSpace("h2")
        a = SuperOperatorSymbol("a", hs=h1)
        b = SuperOperatorSymbol("b", hs=h2)
        c = SuperOperatorSymbol("c", hs=h2)
        dpre = SPre(SuperOperatorSymbol("d", hs=h1))
        epre = SPre(SuperOperatorSymbol("e", hs=h1))
        dpost = SPost(SuperOperatorSymbol("d", hs=h1))
        epost = SPost(SuperOperatorSymbol("e", hs=h1))

        assert a * b == SuperOperatorTimes(a, b)
        assert b * a == a * b
        assert c * a * b * c * a == SuperOperatorTimes(a, a, c, b, c)
Exemplo n.º 25
0
def test_operations():
    h1 = LocalSpace("h1")
    h2 = LocalSpace("h2")
    h3 = LocalSpace("h3")

    h123 = h1 * h2 * h3
    h12 = h1 * h2
    h23 = h2 * h3
    h13 = h1 * h3
    assert h12 * h13 == h123
    assert h12 / h13 == h2
    assert h12 & h13 == h1
    assert (h12 / h13) * (h13 & h12) == h12
    assert h1 & h12 == h1
 def testCommutativity(self):
     h1 = LocalSpace("h1")
     assert SuperOperatorSymbol("A", hs=h1) + SuperOperatorSymbol(
         "B", hs=h1
     ) == (
         SuperOperatorSymbol("B", hs=h1) + SuperOperatorSymbol("A", hs=h1)
     )
Exemplo n.º 27
0
def test_commutator_expand_evaluate():
    """Test expansion and evaluation of commutators"""
    hs = LocalSpace("0")
    A = OperatorSymbol('A', hs=hs)
    B = OperatorSymbol('B', hs=hs)
    C = OperatorSymbol('C', hs=hs)
    D = OperatorSymbol('D', hs=hs)
    E = OperatorSymbol('E', hs=hs)
    expr = Commutator(A, B * C * D * E)
    res = (B * C * D * Commutator(A, E) + B * C * Commutator(A, D) * E +
           B * Commutator(A, C) * D * E + Commutator(A, B) * C * D * E)
    assert expand_commutators_leibniz(expr) == res
    assert expr.doit([Commutator]) == (A * B * C * D * E - B * C * D * E * A)
    assert res.doit([Commutator
                     ]).expand() == (A * B * C * D * E - B * C * D * E * A)

    assert expand_commutators_leibniz(expr, expand_expr=False) == (
        B * (C * (D * Commutator(A, E) + Commutator(A, D) * E) +
             Commutator(A, C) * D * E) + Commutator(A, B) * C * D * E)

    expr = Commutator(A * B * C, D)
    assert expand_commutators_leibniz(expr) == (A * B * Commutator(C, D) +
                                                A * Commutator(B, D) * C +
                                                Commutator(A, D) * B * C)

    expr = Commutator(A * B, C * D)
    assert expand_commutators_leibniz(expr) == (A * Commutator(B, C) * D +
                                                C * A * Commutator(B, D) +
                                                C * Commutator(A, D) * B +
                                                Commutator(A, C) * B * D)
Exemplo n.º 28
0
def test_series_expand():
    """Test series expension of commutator"""
    hs = LocalSpace("0")
    A = OperatorSymbol('A', hs=hs)
    B = OperatorSymbol('B', hs=hs)
    a3, a2, a1, a0, b3, b2, b1, b0, t, t0 = symbols(
        'a_3, a_2, a_1, a_0, b_3, b_2, b_1, b_0, t, t_0')
    A_form = (a3 * t**3 + a2 * t**2 + a1 * t + a0) * A
    B_form = (b3 * t**3 + b2 * t**2 + b1 * t + b0) * B
    comm = Commutator.create(A_form, B_form)
    terms = comm.series_expand(t, 0, 2)
    assert terms == (
        a0 * b0 * Commutator(A, B),
        (a0 * b1 + a1 * b0) * Commutator(A, B),
        (a0 * b2 + a1 * b1 + a2 * b0) * Commutator(A, B),
    )

    A_form = (a1 * t + a0) * A
    B_form = (b1 * t + b0) * B
    comm = Commutator.create(A_form, B_form)
    terms = comm.series_expand(t, t0, 1)
    assert terms == (
        ((a0 * b0 + a0 * b1 * t0 + a1 * b0 * t0 + a1 * b1 * t0**2) *
         Commutator(A, B)),
        (a0 * b1 + a1 * b0 + 2 * a1 * b1 * t0) * Commutator(A, B),
    )

    comm = Commutator.create(A, B)
    terms = comm.series_expand(t, t0, 1)
    assert terms == (Commutator(A, B), ZeroOperator)
Exemplo n.º 29
0
def test_exception_teardown():
    """Test that teardown works when breaking out due to an exception"""
    class TemporaryRulesException(Exception):
        pass

    h1 = LocalSpace("h1")
    a = OperatorSymbol("a", hs=h1)
    b = OperatorSymbol("b", hs=h1)
    hs_repr = "LocalSpace('h1')"
    rule_name = 'extra'
    rule = (pattern_head(6, a), lambda: b)
    simplifications = OperatorPlus.simplifications
    try:
        with temporary_rules(ScalarTimesOperator, OperatorPlus):
            ScalarTimesOperator.add_rule(rule_name, rule[0], rule[1])
            OperatorPlus.simplifications.remove(scalars_to_op)
            raise TemporaryRulesException
    except TemporaryRulesException:
        assert rule not in ScalarTimesOperator._rules.values()
        assert scalars_to_op in OperatorPlus.simplifications
    finally:
        # Even if this failed we don't want to make a mess for other tests
        try:
            ScalarTimesOperator.del_rules(rule_name)
        except KeyError:
            pass
        OperatorPlus.simplifications = simplifications
def test_exception_teardown():
    """Test that teardown works when breaking out due to an exception"""
    class InstanceCachingException(Exception):
        pass

    h1 = LocalSpace("caching")
    a = OperatorSymbol("a", hs=h1)
    b = OperatorSymbol("b", hs=h1)
    c = OperatorSymbol("c", hs=h1)
    expr1 = a + b
    instance_caching = Expression.instance_caching
    try:
        with no_instance_caching():
            expr2 = a + c
            raise InstanceCachingException
    except InstanceCachingException:
        expr3 = b + c
        assert expr1 in OperatorPlus._instances.values()
        assert expr2 not in OperatorPlus._instances.values()
        assert expr3 in OperatorPlus._instances.values()
    finally:
        # Even if this failed we don't want to make a mess for other tests
        Expression.instance_caching = instance_caching
    instances = OperatorPlus._instances
    try:
        with temporary_instance_cache(OperatorPlus):
            expr2 = a + c
            raise InstanceCachingException
    except InstanceCachingException:
        assert expr1 in OperatorPlus._instances.values()
        assert expr2 not in OperatorPlus._instances.values()
    finally:
        # Even if this failed we don't want to make a mess for other tests
        OperatorPlus._instances = instances