Exemplo n.º 1
0
def test_commutator_expand_evaluate():
    """Test expansion and evaluation of commutators"""
    hs = LocalSpace("0")
    A = OperatorSymbol('A', hs=hs)
    B = OperatorSymbol('B', hs=hs)
    C = OperatorSymbol('C', hs=hs)
    D = OperatorSymbol('D', hs=hs)
    E = OperatorSymbol('E', hs=hs)
    expr = Commutator(A, B * C * D * E)
    res = (B * C * D * Commutator(A, E) + B * C * Commutator(A, D) * E +
           B * Commutator(A, C) * D * E + Commutator(A, B) * C * D * E)
    assert expand_commutators_leibniz(expr) == res
    assert expr.doit([Commutator]) == (A * B * C * D * E - B * C * D * E * A)
    assert res.doit([Commutator
                     ]).expand() == (A * B * C * D * E - B * C * D * E * A)

    assert expand_commutators_leibniz(expr, expand_expr=False) == (
        B * (C * (D * Commutator(A, E) + Commutator(A, D) * E) +
             Commutator(A, C) * D * E) + Commutator(A, B) * C * D * E)

    expr = Commutator(A * B * C, D)
    assert expand_commutators_leibniz(expr) == (A * B * Commutator(C, D) +
                                                A * Commutator(B, D) * C +
                                                Commutator(A, D) * B * C)

    expr = Commutator(A * B, C * D)
    assert expand_commutators_leibniz(expr) == (A * Commutator(B, C) * D +
                                                C * A * Commutator(B, D) +
                                                C * Commutator(A, D) * B +
                                                Commutator(A, C) * B * D)
Exemplo n.º 2
0
def test_exception_teardown():
    """Test that teardown works when breaking out due to an exception"""
    class TemporaryRulesException(Exception):
        pass

    h1 = LocalSpace("h1")
    a = OperatorSymbol("a", hs=h1)
    b = OperatorSymbol("b", hs=h1)
    hs_repr = "LocalSpace('h1')"
    rule_name = 'extra'
    rule = (pattern_head(6, a), lambda: b)
    simplifications = OperatorPlus.simplifications
    try:
        with temporary_rules(ScalarTimesOperator, OperatorPlus):
            ScalarTimesOperator.add_rule(rule_name, rule[0], rule[1])
            OperatorPlus.simplifications.remove(scalars_to_op)
            raise TemporaryRulesException
    except TemporaryRulesException:
        assert rule not in ScalarTimesOperator._rules.values()
        assert scalars_to_op in OperatorPlus.simplifications
    finally:
        # Even if this failed we don't want to make a mess for other tests
        try:
            ScalarTimesOperator.del_rules(rule_name)
        except KeyError:
            pass
        OperatorPlus.simplifications = simplifications
Exemplo n.º 3
0
def test_series_expand():
    """Test series expension of commutator"""
    hs = LocalSpace("0")
    A = OperatorSymbol('A', hs=hs)
    B = OperatorSymbol('B', hs=hs)
    a3, a2, a1, a0, b3, b2, b1, b0, t, t0 = symbols(
        'a_3, a_2, a_1, a_0, b_3, b_2, b_1, b_0, t, t_0')
    A_form = (a3 * t**3 + a2 * t**2 + a1 * t + a0) * A
    B_form = (b3 * t**3 + b2 * t**2 + b1 * t + b0) * B
    comm = Commutator.create(A_form, B_form)
    terms = comm.series_expand(t, 0, 2)
    assert terms == (
        a0 * b0 * Commutator(A, B),
        (a0 * b1 + a1 * b0) * Commutator(A, B),
        (a0 * b2 + a1 * b1 + a2 * b0) * Commutator(A, B),
    )

    A_form = (a1 * t + a0) * A
    B_form = (b1 * t + b0) * B
    comm = Commutator.create(A_form, B_form)
    terms = comm.series_expand(t, t0, 1)
    assert terms == (
        ((a0 * b0 + a0 * b1 * t0 + a1 * b0 * t0 + a1 * b1 * t0**2) *
         Commutator(A, B)),
        (a0 * b1 + a1 * b0 + 2 * a1 * b1 * t0) * Commutator(A, B),
    )

    comm = Commutator.create(A, B)
    terms = comm.series_expand(t, t0, 1)
    assert terms == (Commutator(A, B), ZeroOperator)
Exemplo n.º 4
0
def test_finditer():
    h1 = LocalSpace("h1")
    a = OperatorSymbol("a", hs=h1)
    b = OperatorSymbol("b", hs=h1)
    c = OperatorSymbol("c", hs=h1)
    h1_custom = LocalSpace("h1", local_identifiers={'Create': 'c'})
    c_local = Create(hs=h1_custom)

    expr = 2 * (a * b * c - b * c * a + a * b)
    pat = wc('sym', head=OperatorSymbol)
    for m in pat.finditer(expr):
        assert 'sym' in m
    matches = list(pat.finditer(expr))
    assert len(matches) == 8
    op_symbols = [m['sym'] for m in matches]
    assert set(op_symbols) == {a, b, c}

    op = wc(head=Operator)
    three_factors = pattern(OperatorTimes, op, op, op).findall(expr)
    assert three_factors == [a * b * c, b * c * a]
    assert len(list(pattern(LocalOperator).finditer(expr))) == 0
    assert (
        len(
            list(
                pattern(LocalOperator).finditer(expr.substitute({c: c_local}))
            )
        )
        == 2
    )
def test_exception_teardown():
    """Test that teardown works when breaking out due to an exception"""
    class InstanceCachingException(Exception):
        pass

    h1 = LocalSpace("caching")
    a = OperatorSymbol("a", hs=h1)
    b = OperatorSymbol("b", hs=h1)
    c = OperatorSymbol("c", hs=h1)
    expr1 = a + b
    instance_caching = Expression.instance_caching
    try:
        with no_instance_caching():
            expr2 = a + c
            raise InstanceCachingException
    except InstanceCachingException:
        expr3 = b + c
        assert expr1 in OperatorPlus._instances.values()
        assert expr2 not in OperatorPlus._instances.values()
        assert expr3 in OperatorPlus._instances.values()
    finally:
        # Even if this failed we don't want to make a mess for other tests
        Expression.instance_caching = instance_caching
    instances = OperatorPlus._instances
    try:
        with temporary_instance_cache(OperatorPlus):
            expr2 = a + c
            raise InstanceCachingException
    except InstanceCachingException:
        assert expr1 in OperatorPlus._instances.values()
        assert expr2 not in OperatorPlus._instances.values()
    finally:
        # Even if this failed we don't want to make a mess for other tests
        OperatorPlus._instances = instances
Exemplo n.º 6
0
def disjunct_commutative_test_data():
    A1 = OperatorSymbol("A", hs=1)
    B1 = OperatorSymbol("B", hs=1)
    C1 = OperatorSymbol("C", hs=1)
    A2 = OperatorSymbol("A", hs=2)
    B2 = OperatorSymbol("B", hs=2)
    A3 = OperatorSymbol("A", hs=3)
    B4 = OperatorSymbol("B", hs=4)
    tr_A1 = tr(A1, over_space=1)
    tr_A2 = tr(A2, over_space=2)
    A1_m = OperatorSymbol("A", hs=LocalSpace(1, order_index=2))
    B1_m = OperatorSymbol("B", hs=LocalSpace(1, order_index=2))
    B2_m = OperatorSymbol("B", hs=LocalSpace(2, order_index=1))
    ket_0 = BasisKet(0, hs=1)
    ket_1 = BasisKet(1, hs=1)
    ketbra = KetBra(ket_0, ket_1)
    braket = BraKet(ket_1, ket_1)
    # fmt: off
    return [
        ([B2, B1, A1], [B1, A1, B2]),
        ([B2_m, B1_m, A1_m], [B2_m, B1_m, A1_m]),
        ([B1_m, A1_m, B2_m], [B2_m, B1_m, A1_m]),
        ([B1, A2, C1, tr_A2], [tr_A2, B1, C1, A2]),
        ([A1, B1 + B2], [A1, B1 + B2]),
        ([B1 + B2, A1], [B1 + B2, A1]),
        ([A3 + B4, A1 + A2], [A1 + A2, A3 + B4]),
        ([A1 + A2, A3 + B4], [A1 + A2, A3 + B4]),
        ([B4 + A3, A2 + A1], [A1 + A2, A3 + B4]),
        ([tr_A2, tr_A1], [tr_A1, tr_A2]),
        ([A2, ketbra, A1], [ketbra, A1, A2]),
        ([A2, braket, A1], [braket, A1, A2]),
    ]
Exemplo n.º 7
0
def test_commutator_hs():
    """Test that commutator is in the correct Hilbert space"""
    hs1 = LocalSpace("1")
    hs2 = LocalSpace("2")
    A = OperatorSymbol('A', hs=hs1)
    B = OperatorSymbol('B', hs=hs2)
    C = OperatorSymbol('C', hs=hs2)
    assert Commutator.create(B, C).space == hs2
    assert Commutator.create(B, A + C).space == hs1 * hs2
Exemplo n.º 8
0
def test_commutator_oder():
    """Test anti-commutativity of commutators"""
    hs = LocalSpace("0")
    A = OperatorSymbol('A', hs=hs)
    B = OperatorSymbol('B', hs=hs)
    assert Commutator.create(B, A) == -Commutator(A, B)
    a = Destroy(hs=hs)
    a_dag = Create(hs=hs)
    assert Commutator.create(a, a_dag) == -Commutator.create(a_dag, a)
Exemplo n.º 9
0
def test_pull_out_scalars():
    """Test that scalars are properly pulled out of commutators"""
    hs = LocalSpace("sys")
    A = OperatorSymbol('A', hs=hs)
    B = OperatorSymbol('B', hs=hs)
    alpha, beta = symbols('alpha, beta')
    assert Commutator.create(alpha * A, B) == alpha * Commutator(A, B)
    assert Commutator.create(A, beta * B) == beta * Commutator(A, B)
    assert Commutator.create(alpha * A,
                             beta * B) == alpha * beta * Commutator(A, B)
Exemplo n.º 10
0
def test_disjunct_hs():
    """Test that commutator of objects in disjunt Hilbert spaces is zero"""
    hs1 = LocalSpace("1")
    hs2 = LocalSpace("2")
    alpha, beta = symbols('alpha, beta')
    A = OperatorSymbol('A', hs=hs1)
    B = OperatorSymbol('B', hs=hs2)
    assert Commutator.create(A, B) == ZeroOperator
    assert Commutator.create(alpha, beta) == ZeroOperator
    assert Commutator.create(alpha, B) == ZeroOperator
    assert Commutator.create(A, beta) == ZeroOperator
Exemplo n.º 11
0
def test_diff():
    """Test differentiation of commutators"""
    hs = LocalSpace("0")
    A = OperatorSymbol('A', hs=hs)
    B = OperatorSymbol('B', hs=hs)
    alpha, t = symbols('alpha, t')
    assert Commutator(alpha * t**2 * A,
                      t * B).diff(t) == (3 * alpha * t**2 * Commutator(A, B))
    assert Commutator.create(alpha * t**2 * A,
                             t * B).diff(t) == (3 * alpha * t**2 *
                                                Commutator(A, B))
    assert Commutator(A, B).diff(t) == ZeroOperator
 def testSPreSPostRules(self):
     h1 = LocalSpace("h1")
     h2 = LocalSpace("h2")
     d = OperatorSymbol("d", hs=h1)
     e = OperatorSymbol("e", hs=h1)
     dpre = SPre(d)
     epre = SPre(e)
     dpost = SPost(d)
     epost = SPost(e)
     assert dpre * epre == SPre(d * e)
     assert dpost * epost == SPost(e * d)
     assert dpost * epre == SPre(e) * SPost(d)
    def testCombination(self):

        h1 = LocalSpace("h1")
        a = OperatorSymbol("a", hs=h1)
        A = SuperOperatorSymbol("A", hs=h1)
        B = SuperOperatorSymbol("B", hs=h1)
        assert A * (B * a) == (A * B) * a
    def testEqual2(self):
        h1 = LocalSpace("h1")
        A = SuperOperatorSymbol("A", hs=h1)
        a = OperatorSymbol("a", hs=h1)

        OTO = SuperOperatorTimesOperator(A, a)
        assert A * a == OTO
Exemplo n.º 15
0
def test_symbol():
    expN = OperatorSymbol("expN", hs=1)
    hs1 = LocalSpace("sym1", dimension=10)
    hs2 = LocalSpace("sym2", dimension=5)
    N = Create(hs=hs1) * Destroy(hs=hs1)

    M = Create(hs=hs2) * Destroy(hs=hs2)

    converter1 = {expN: convert_to_qutip(N).expm()}
    expNq = convert_to_qutip(expN, mapping=converter1)

    assert (np.linalg.norm(expNq.data.toarray() -
                           (convert_to_qutip(N).expm().data.toarray())) < 1e-8)

    expNMq = convert_to_qutip(expN * M, mapping=converter1)

    assert (np.linalg.norm(expNMq.data.toarray() - (qutip.tensor(
        convert_to_qutip(N).expm(), convert_to_qutip(M)).data.toarray())) <
            1e-8)

    converter2 = {expN: lambda expr: convert_to_qutip(N).expm()}
    expNq = convert_to_qutip(expN, mapping=converter2)

    assert (np.linalg.norm(expNq.data.toarray() -
                           (convert_to_qutip(N).expm().data.toarray())) < 1e-8)

    expNMq = convert_to_qutip(expN * M, mapping=converter1)

    assert (np.linalg.norm(expNMq.data.toarray() - (qutip.tensor(
        convert_to_qutip(N).expm(), convert_to_qutip(M)).data.toarray())) <
            1e-8)
Exemplo n.º 16
0
def test_extra_rules():
    """Test creation of expr with extra rules"""
    h1 = LocalSpace("h1")
    a = OperatorSymbol("a", hs=h1)
    b = OperatorSymbol("b", hs=h1)
    hs_repr = "LocalSpace('h1')"
    rule = (pattern_head(6, a), lambda: b)
    with temporary_rules(ScalarTimesOperator):
        ScalarTimesOperator.add_rule('extra', rule[0], rule[1])
        assert ('extra', rule) in ScalarTimesOperator._rules.items()
        expr = 2 * a * 3 + 3 * (2 * a * 3)
        assert expr == 4 * b
    assert rule not in ScalarTimesOperator._rules.values()
    assert (srepr(2 * a * 3 + 3 *
                  (2 * a * 3)) == "ScalarTimesOperator(ScalarValue(24), "
            "OperatorSymbol('a', hs=" + hs_repr + "))")
Exemplo n.º 17
0
def test_commutator_expansion():
    """Test expansion of sums in commutator"""
    hs = LocalSpace("0")
    A = OperatorSymbol('A', hs=hs)
    B = OperatorSymbol('B', hs=hs)
    C = OperatorSymbol('C', hs=hs)
    D = OperatorSymbol('D', hs=hs)
    alpha = symbols('alpha')
    assert Commutator(A + B, C).expand() == Commutator(A, C) + Commutator(B, C)
    assert Commutator(A, B + C).expand() == Commutator(A, B) + Commutator(A, C)
    assert Commutator(A + B,
                      C + D).expand() == (Commutator(A, C) + Commutator(A, D) +
                                          Commutator(B, C) + Commutator(B, D))
    assert Commutator(A + B, C + D +
                      alpha).expand() == (Commutator(A, C) + Commutator(A, D) +
                                          Commutator(B, C) + Commutator(B, D))
Exemplo n.º 18
0
def test_proto_expr_as_sequence():
    """Test sequence interface of proto-expressions"""
    h1 = LocalSpace("h1")
    a = OperatorSymbol("a", hs=h1)
    proto_expr = ProtoExpr.from_expr(a)
    assert len(proto_expr) == 2
    assert proto_expr[0] == 'a'
    assert proto_expr[1] == h1
def test_context_instance_caching():
    """Test that we can temporarily suppress instance caching"""
    h1 = LocalSpace("caching")
    a = OperatorSymbol("a", hs=h1)
    b = OperatorSymbol("b", hs=h1)
    c = OperatorSymbol("c", hs=h1)
    expr1 = a + b
    assert expr1 in OperatorPlus._instances.values()
    with no_instance_caching():
        assert expr1 in OperatorPlus._instances.values()
        expr2 = a + c
        assert expr2 not in OperatorPlus._instances.values()
    with temporary_instance_cache(OperatorPlus):
        assert len(OperatorPlus._instances) == 0
        expr2 = a + c
        assert expr2 in OperatorPlus._instances.values()
    assert expr1 in OperatorPlus._instances.values()
    assert expr2 not in OperatorPlus._instances.values()
Exemplo n.º 20
0
def test_simplify():
    """Test simplification of expr according to manual rules"""
    h1 = LocalSpace("h1")
    a = OperatorSymbol("a", hs=h1)
    b = OperatorSymbol("b", hs=h1)
    c = OperatorSymbol("c", hs=h1)
    d = OperatorSymbol("d", hs=h1)

    expr = 2 * (a * b * c - b * c * a)

    A_ = wc('A', head=Operator)
    B_ = wc('B', head=Operator)
    C_ = wc('C', head=Operator)

    def b_times_c_equal_d(B, C):
        if B.label == 'b' and C.label == 'c':
            return d
        else:
            raise CannotSimplify

    with temporary_rules(OperatorTimes):
        OperatorTimes.add_rule('extra', pattern_head(B_, C_),
                               b_times_c_equal_d)
        new_expr = expr.rebuild()

    commutator_rule = (
        pattern(
            OperatorPlus,
            pattern(OperatorTimes, A_, B_),
            pattern(ScalarTimesOperator, -1, pattern(OperatorTimes, B_, A_)),
        ),
        lambda A, B: OperatorSymbol("Commut%s%s" %
                                    (A.label.upper(), B.label.upper()),
                                    hs=A.space),
    )
    assert commutator_rule[0].match(new_expr.term)

    with temporary_rules(OperatorTimes):
        OperatorTimes.add_rule('extra', pattern_head(B_, C_),
                               b_times_c_equal_d)
        new_expr = _apply_rules(expr, [commutator_rule])
    assert (srepr(new_expr) ==
            "ScalarTimesOperator(ScalarValue(2), OperatorSymbol('CommutAD', "
            "hs=LocalSpace('h1')))")
    def testZeroOne(self):
        h1 = LocalSpace("h1")
        h2 = LocalSpace("h2")
        a = OperatorSymbol("a", hs=h1)
        B = SuperOperatorSymbol("B", hs=h2)
        z = ZeroSuperOperator
        one = IdentitySuperOperator

        assert one * a == a
        assert z * a == ZeroOperator
Exemplo n.º 22
0
def test_findall():
    h1 = LocalSpace("h1")
    a = OperatorSymbol("a", hs=h1)
    b = OperatorSymbol("b", hs=h1)
    c = OperatorSymbol("c", hs=h1)
    h1_custom = LocalSpace("h1", local_identifiers={'Create': 'c'})
    c_local = Create(hs=h1_custom)

    expr = 2 * (a * b * c - b * c * a + a * b)
    op_symbols = pattern(OperatorSymbol).findall(expr)
    assert len(op_symbols) == 8
    assert set(op_symbols) == {a, b, c}
    op = wc(head=Operator)
    three_factors = pattern(OperatorTimes, op, op, op).findall(expr)
    assert three_factors == [a * b * c, b * c * a]
    assert len(pattern(LocalOperator).findall(expr)) == 0
    assert (
        len(pattern(LocalOperator).findall(expr.substitute({c: c_local}))) == 2
    )
Exemplo n.º 23
0
def test_custom_repr():
    A = OperatorSymbol('A', hs=1)
    assert repr(A) in ['Â⁽¹⁾', 'A^(1)']
    init_printing(repr_format='srepr', reset=True)
    assert repr(A) == "OperatorSymbol('A', hs=LocalSpace('1'))"
    init_printing(reset=True)
    assert repr(A) in ['Â⁽¹⁾', 'A^(1)']
    with configure_printing(repr_format='srepr'):
        assert repr(A) == "OperatorSymbol('A', hs=LocalSpace('1'))"
    assert repr(A) in ['Â⁽¹⁾', 'A^(1)']
Exemplo n.º 24
0
def test_sympy_setting():
    """Test that we can pass settings to the sympy sub-printer"""
    x = symbols('a')
    A = OperatorSymbol("A", hs=1)
    expr = atan(x) * A
    assert latex(expr) == r'\operatorname{atan}{\left(a \right)} \hat{A}^{(1)}'
    assert (
        latex(expr, inv_trig_style='full')
        == r'\arctan{\left(a \right)} \hat{A}^{(1)}'
    )
Exemplo n.º 25
0
def test_sympy_tex_cached():
    """Test that we can use the cache to change how sub-expressions of sympy
    are printed in tex"""
    a = symbols('a')
    A = OperatorSymbol("A", hs=1)
    expr = (a ** 2 / 2) * A

    assert latex(expr) == r'\frac{a^{2}}{2} \hat{A}^{(1)}'

    cache = {a: r'\alpha'}
    assert latex(expr, cache=cache) == r'\frac{\alpha^{2}}{2} \hat{A}^{(1)}'
Exemplo n.º 26
0
def test_extra_binary_rules():
    """Test creation of expr with extra binary rules"""
    h1 = LocalSpace("h1")
    a = OperatorSymbol("a", hs=h1)
    b = OperatorSymbol("b", hs=h1)
    c = OperatorSymbol("c", hs=h1)
    A_ = wc('A', head=Operator)
    B_ = wc('B', head=Operator)
    rule = (
        pattern_head(
            pattern(OperatorTimes, A_, B_),
            pattern(ScalarTimesOperator, -1, pattern(OperatorTimes, B_, A_)),
        ),
        lambda A, B: c,
    )
    with temporary_rules(OperatorPlus):
        OperatorPlus.add_rule('extra', rule[0], rule[1])
        assert ('extra', rule) in OperatorPlus._binary_rules.items()
        expr = 2 * (a * b - b * a + IdentityOperator)
        assert expr == 2 * (c + IdentityOperator)
    assert rule not in OperatorPlus._binary_rules.values()
Exemplo n.º 27
0
def test_substitute_sub_expr(H_JC):
    """Test that we can replace non-atomic sub-expressions"""
    hil_a = LocalSpace('A')
    hil_b = LocalSpace('B')
    omega_a, omega_b, g = symbols('omega_a, omega_b, g')
    a = Destroy(hs=hil_a)
    a_dag = a.dag()
    b = Destroy(hs=hil_b)
    b_dag = b.dag()
    n_op_a = OperatorSymbol('n', hs=hil_a)
    n_op_b = OperatorSymbol('n', hs=hil_b)
    x_op = OperatorSymbol('x', hs=H_JC.space)
    mapping = {
        a_dag * a: n_op_a,
        b_dag * b: n_op_b,
        (a_dag * b + b_dag * a): x_op + x_op.dag(),
    }
    H2_expected = (omega_a * n_op_a + omega_b * n_op_b + 2 * g *
                   (x_op + x_op.dag()))

    H2 = H_JC.substitute(mapping)
    assert H2 == H2_expected

    H2 = substitute(H_JC, mapping)
    assert H2 == H2_expected
Exemplo n.º 28
0
def test_exception_teardown():
    """Test that teardown works when breaking out due to an exception"""

    class ConfigurePrintingException(Exception):
        pass

    init_printing(show_hs_label=True, repr_format='ascii')
    try:
        with configure_printing(show_hs_label=False, repr_format='srepr'):
            raise ConfigurePrintingException
    except ConfigurePrintingException:
        A = OperatorSymbol('A', hs=1)
        assert repr(A) == 'A^(1)'
    finally:
        # Even if this failed we don't want to make a mess for other tests
        init_printing(reset=True)
Exemplo n.º 29
0
def test_no_rules():
    """Test creation of expr when rule application for one or more operation is
    suppressed"""
    A, B = (OperatorSymbol(s, hs=0) for s in ('A', 'B'))
    expr = lambda: Commutator.create(2 * A, 2 * (3 * B))
    myrepr = lambda e: srepr(e, cache={A: 'A', B: 'B'})
    assert (myrepr(
        expr()) == 'ScalarTimesOperator(ScalarValue(12), Commutator(A, B))')
    with temporary_rules(ScalarTimesOperator, clear=True):
        assert (myrepr(expr()) == 'ScalarTimesOperator(ScalarValue(4), '
                'ScalarTimesOperator(ScalarValue(3), Commutator(A, B)))')
    with temporary_rules(Commutator, clear=True):
        assert (myrepr(
            expr()) == 'Commutator(ScalarTimesOperator(ScalarValue(2), A), '
                'ScalarTimesOperator(ScalarValue(6), B))')
    with temporary_rules(Commutator, ScalarTimesOperator, clear=True):
        assert (myrepr(
            expr()) == 'Commutator(ScalarTimesOperator(ScalarValue(2), A), '
                'ScalarTimesOperator(ScalarValue(2), '
                'ScalarTimesOperator(ScalarValue(3), B)))')
    assert (myrepr(
        expr()) == 'ScalarTimesOperator(ScalarValue(12), Commutator(A, B))')
Exemplo n.º 30
0
            pattern_head('O', FullSpace, a=1, b=2, conditions=[true_cond]),
            Pattern(
                args=['O', FullSpace],
                kwargs={'a': 1, 'b': 2},
                conditions=[true_cond],
            ),
        ),
    ]
    for pat1, pat2 in patterns:
        print(repr(pat1))
        assert pat1 == pat2


# test expressions
two_t = 2 * Symbol('t')
two_O = 2 * OperatorSymbol('O', hs=FullSpace)
proto_two_O = ProtoExpr([2, OperatorSymbol('O', hs=FullSpace)], {})
proto_kwargs = ProtoExpr([1, 2], {'a': '3', 'b': 4})
proto_kw_only = ProtoExpr([], {'a': 1, 'b': 2})
proto_ints2 = ProtoExpr([1, 2], {})
proto_ints3 = ProtoExpr([1, 2, 3], {})
proto_ints4 = ProtoExpr([1, 2, 3, 4], {})
proto_ints5 = ProtoExpr([1, 2, 3, 4, 5], {})

# test patterns and wildcards
wc_a_int_2 = wc('a', head=(ScalarValue, int), conditions=[lambda i: i == 2])
wc_a_int_3 = wc('a', head=(ScalarValue, int), conditions=[lambda i: i == 3])
wc_a_int = wc('a', head=int)
wc_label_str = wc('label', head=str)
wc_hs = wc('space', head=HilbertSpace)
pattern_two_O = pattern(