Exemplo n.º 1
0
def main():
    option_parser, opts, args = parse_command_line_parameters(**script_info)
    params = eval(str(opts))

    params["metrics"] = ",".join(opts.metrics)

    # create local copies of command-line options
    input_path = opts.input_path
    output_dir = opts.output_path
    metrics_list = opts.metrics
    tree_fp = opts.tree_path

    # Check the tree exists if phylogenetically-aware measure is used
    for metric in metrics_list:
        try:
            metric_f = get_phylogenetic_metric(metric)
            if tree_fp is None:
                option_parser.error("metric %s requires a tree, but " "none found" % metric)
        except AttributeError:
            pass
    if isfile(input_path):
        # single otu table mode
        parallel_runner = ParallelBetaDiversitySingle(
            cluster_jobs_fp=opts.cluster_jobs_fp,
            jobs_to_start=opts.jobs_to_start,
            retain_temp_files=opts.retain_temp_files,
            suppress_polling=opts.suppress_polling,
            seconds_to_sleep=opts.seconds_to_sleep,
        )
        parallel_runner(
            input_path,
            output_dir,
            params,
            job_prefix=opts.job_prefix,
            poll_directly=opts.poll_directly,
            suppress_submit_jobs=opts.suppress_submit_jobs,
        )

    else:
        input_fps = glob("%s/*" % input_path)
        parallel_runner = ParallelBetaDiversityMultiple(
            cluster_jobs_fp=opts.cluster_jobs_fp,
            jobs_to_start=opts.jobs_to_start,
            retain_temp_files=opts.retain_temp_files,
            suppress_polling=opts.suppress_polling,
            seconds_to_sleep=opts.seconds_to_sleep,
        )
        parallel_runner(
            input_fps,
            output_dir,
            params,
            job_prefix=opts.job_prefix,
            poll_directly=opts.poll_directly,
            suppress_submit_jobs=opts.suppress_submit_jobs,
        )
def main():
    option_parser, opts, args = parse_command_line_parameters(**script_info)
    params = eval(str(opts))

    params['metrics'] = ','.join(opts.metrics)

    # create local copies of command-line options
    input_path = opts.input_path
    output_dir = opts.output_path
    metrics_list = opts.metrics
    tree_fp = opts.tree_path

    # Check the tree exists if phylogenetically-aware measure is used
    for metric in metrics_list:
        try:
            metric_f = get_phylogenetic_metric(metric)
            if tree_fp == None:
                stderr.write("metric %s requires a tree, but none found\n"\
                    % (metric,))
                exit(1)
        except AttributeError:
            pass
    if isfile(input_path):
        # single otu table mode
        parallel_runner = ParallelBetaDiversitySingle(
            cluster_jobs_fp=opts.cluster_jobs_fp,
            jobs_to_start=opts.jobs_to_start,
            retain_temp_files=opts.retain_temp_files,
            suppress_polling=opts.suppress_polling,
            seconds_to_sleep=opts.seconds_to_sleep)
        parallel_runner(input_path,
                        output_dir,
                        params,
                        job_prefix=opts.job_prefix,
                        poll_directly=opts.poll_directly,
                        suppress_submit_jobs=False)

    else:
        input_fps = glob('%s/*' % input_path)
        parallel_runner = ParallelBetaDiversityMultiple(
            cluster_jobs_fp=opts.cluster_jobs_fp,
            jobs_to_start=opts.jobs_to_start,
            retain_temp_files=opts.retain_temp_files,
            suppress_polling=opts.suppress_polling,
            seconds_to_sleep=opts.seconds_to_sleep)
        parallel_runner(input_fps,
                        output_dir,
                        params,
                        job_prefix=opts.job_prefix,
                        poll_directly=opts.poll_directly,
                        suppress_submit_jobs=False)