Exemplo n.º 1
0
 def test_sync_from_storage(self):
     io_reader, io_writer = MemoryDataSetIOFactory.get_reader_writer_pair()
     data_set_consumer = DataSet(storage_reader=io_reader, name='consumer')
     some_array = DataArray('some_array', 'label', shape=(5, 1))
     io_writer.sync_add_data_array_to_storage(some_array)
     data_set_consumer.sync_from_storage(-1)
     self.assertTrue(hasattr(data_set_consumer, 'some_array'))
Exemplo n.º 2
0
 def test_add_array(self):
     array_name = 'some_array'
     data_array = DataArray(array_name,
                            'label',
                            preset_data=np.array([1, 2, 3, 4, 5]))
     data_set = DataSet()
     data_set.add_array(data_array)
     self.assertListEqual(list(data_array), list(data_set.some_array))
     self.assertListEqual(list(data_array),
                          list(data_set.data_arrays[array_name]))
     self.assertIs(data_set.some_array, data_set.data_arrays[array_name])
Exemplo n.º 3
0
    def test_constructor_multiple_data_arrays(self):
        storage = MagicMock(spec=MemoryDataSetIOWriter)
        name = 'ItsAName'
        array_name = 'ItsAnArray'
        user_data = {'some': 'data'}

        x_points = np.array(range(0, 10))
        y_points = np.array(range(0, 5))
        x = DataArray(name='x',
                      label='x-axis',
                      unit='mV',
                      is_setpoint=True,
                      preset_data=np.array(x_points))
        y = DataArray(name='y',
                      label='y-axis',
                      unit='mV',
                      is_setpoint=True,
                      set_arrays=(x, ),
                      preset_data=np.tile(np.array(y_points), [x.size, 1]))
        z = DataArray(name=array_name,
                      label='z-axis',
                      unit='ma',
                      set_arrays=[y, x],
                      preset_data=np.NaN * np.ones(
                          (x_points.size, y_points.size)))
        other_z = DataArray(name='other_array',
                            label='z-axis',
                            unit='ma',
                            set_arrays=[y, x],
                            preset_data=np.NaN * np.ones(
                                (x_points.size, y_points.size)))

        data_set = DataSet(storage_writer=storage,
                           name=name,
                           user_data=user_data,
                           data_arrays=[z, other_z],
                           set_arrays=[y, x])
        self.assertEqual([storage], data_set.storage)
        self.assertEqual(name, data_set.name)
        self.assertDictEqual(user_data, data_set.user_data)
        self.assertEqual(z, data_set.data_arrays[array_name])
        self.assertEqual(array_name, data_set.default_array_name)

        with self.assertRaises(TypeError) as error:
            DataSet(data_arrays=np.array([1, 2, 3, 4]))
        self.assertIn(
            "'data_arrays' have to be of type 'DataArray', not <class 'numpy.ndarray'>",
            error.exception.args)
Exemplo n.º 4
0
 def test_save_to_storage_raises_error(self):
     data_set = DataSet(storage_reader=MagicMock())
     writer = MagicMock()
     error_args = ValueError, "It is not allowed to have both storage_reader and storage_writer."
     self.assertRaisesRegex(*error_args, data_set.add_storage_writer,
                            writer)
     writer.assert_not_called()
Exemplo n.º 5
0
    def test_set_arrays_access_via_attribute(self):
        x_points = np.array(range(0, 2))
        y_points = np.array(range(0, 2))
        x = DataArray(name="x",
                      label="x-axis",
                      unit="mV",
                      is_setpoint=True,
                      preset_data=x_points)
        y = DataArray(name="y",
                      label="y-axis",
                      unit="mV",
                      is_setpoint=True,
                      preset_data=np.tile(np.array(y_points), [x.size, 1]))
        z = DataArray(name="z",
                      label="z-axis",
                      unit="ma",
                      set_arrays=(x, y),
                      preset_data=np.NaN * np.ones(
                          (x_points.size, y_points.size)))
        data_set = DataSet(data_arrays=[z])

        attrs = dir(data_set)
        self.assertIn('x', attrs)
        self.assertIn('y', attrs)
        self.assertEqual(data_set.x, x)
        self.assertEqual(data_set.y, y)
Exemplo n.º 6
0
 def test_constructor(self):
     storage = MagicMock(spec=MemoryDataSetIOWriter)
     name = 'ItsAName'
     array_name = 'ItsAnArray'
     time_stamp = datetime.datetime(2018, 12, 24, 18, 0)
     user_data = {'some': 'data'}
     set_arrays = DataArray('setpoints',
                            'X',
                            is_setpoint=True,
                            preset_data=np.array([1, 2, 3, 4, 5]))
     data_arrays = DataArray(array_name,
                             'results',
                             shape=(5, ),
                             set_arrays=[set_arrays])
     data_set = DataSet(storage_writer=storage,
                        name=name,
                        time_stamp=time_stamp,
                        user_data=user_data,
                        data_arrays=data_arrays,
                        set_arrays=set_arrays)
     self.assertEqual([storage], data_set.storage)
     self.assertEqual(name, data_set.name)
     self.assertEqual(time_stamp, data_set.time_stamp)
     self.assertDictEqual(user_data, data_set.user_data)
     self.assertEqual(data_arrays, data_set.data_arrays[array_name])
     self.assertEqual(array_name, data_set.default_array_name)
Exemplo n.º 7
0
    def test_run_process_multiple_signal_processors(self):
        data_set = DataSet(data_arrays=DataArray('x', 'x', preset_data=array([1, 2, 3, 4, 5])))

        class PlusOneSignalProcessor(SignalProcessorInterface):
            def __init__(self):
                self._signal_data = None

            def run_process(self, signal_data: DataSet) -> DataSet:
                self._signal_data = signal_data
                signal_data.data_arrays['x'] += 1
                return signal_data

        class TimesTwoSignalProcessor(SignalProcessorInterface):
            def __init__(self):
                self._signal_data = None

            def run_process(self, signal_data: DataSet) -> DataSet:
                self._signal_data = signal_data
                signal_data.data_arrays['x'] *= 2
                return signal_data

        signal_processor_runner = SignalProcessorRunner()
        signal_processor_runner.add_signal_processor(PlusOneSignalProcessor())
        signal_processor_runner.add_signal_processor(TimesTwoSignalProcessor())

        new_data_set = signal_processor_runner.run(data_set)

        self.assertIs(data_set.data_arrays['x'], new_data_set.data_arrays['x'])
        self.assertTrue(array_equal(new_data_set.data_arrays['x'], array([4, 6, 8, 10, 12])))
Exemplo n.º 8
0
    def load(
            name: Optional[str] = None,
            document_id: Optional[str] = None,
            database: str = MongoDataSetIO.DEFAULT_DATABASE_NAME,
            collection: str = MongoDataSetIO.DEFAULT_COLLECTION_NAME
    ) -> DataSet:
        """ Load an existing data set from the mongodb.

        Args:
            name: Name of the data set.
            document_id: _id of the data set.
            database: Name of the database.
            collection: Name of the collections.

        Returns:
            A new instance of the underlying data set.

        Raises:
            DocumentNotFoundError: If document_id or name do not match any data set in database.

        """
        reader = MongoDataSetIOReader(name,
                                      document_id,
                                      database=database,
                                      collection=collection)
        return DataSet(storage_reader=reader)
Exemplo n.º 9
0
    def __dummy_data_set(period, sample_rate, width, resolution):
        time_data = TestProcessSawtooth2D.__dummy_time_data(period, sample_rate)
        set_array = DataArray('ScopeTime', 'Time', unit='seconds', is_setpoint=True, preset_data=time_data)

        scope_data_1 = TestProcessSawtooth2D.__dummy_scope_data(time_data, resolution[0], period, width[0])
        data_array_1 = TestProcessSawtooth2D.__dummy_data_array(set_array, scope_data_1, channel_index=1, trace_number=1)

        scope_data_2 = TestProcessSawtooth2D.__dummy_scope_data(time_data, resolution[1], period, width[1])
        data_array_2 = TestProcessSawtooth2D.__dummy_data_array(set_array, scope_data_2, channel_index=2, trace_number=2)

        data_set = DataSet()
        data_set.user_data = {'resolution': resolution, 'width': width}
        data_set.add_array(data_array_1)
        data_set.add_array(data_array_2)

        return data_set
Exemplo n.º 10
0
    def test_run_process_without_signal_processor(self):
        data_set = DataSet(data_arrays=DataArray('x', 'x', preset_data=array([1, 2, 3, 4, 5])))

        signal_processor_runner = SignalProcessorRunner()

        new_data_set = signal_processor_runner.run(data_set)
        self.assertIs(data_set.data_arrays['x'], new_data_set.data_arrays['x'])
        self.assertTrue(array_equal(new_data_set.data_arrays['x'], array([1, 2, 3, 4, 5])))
Exemplo n.º 11
0
 def test__repr__(self):
     data_set = DataSet(name='some_name',
                        time_stamp=datetime.datetime(2000, 1, 1),
                        user_data={'user': '******'},
                        set_arrays=[])
     expect = "DataSet(id={}, name='{}', storage_writer=[], storage_reader=None, time_stamp={}, user_data={}, " \
              "data_arrays={}, set_arrays={})".format(
         id(data_set), 'some_name', 'datetime.datetime(2000, 1, 1, 0, 0)', {'user': '******'}, {}, {})
     self.assertEqual(expect, repr(data_set))
Exemplo n.º 12
0
    def test_integrate_with_data_set_io_add_array(self):
        io_reader, io_writer = MemoryDataSetIOFactory.get_reader_writer_pair()
        data_set_consumer = DataSet(storage_reader=io_reader)
        some_array = DataArray('some_array', 'label', shape=(5, 5))
        data_set_producer = DataSet(storage_writer=io_writer)
        data_set_producer.add_array(some_array)

        data_set_consumer.sync_from_storage(-1)
        self.assertTrue(hasattr(data_set_consumer, 'some_array'))
        self.assertEqual('some_array', data_set_consumer.some_array.name)
        self.assertEqual((5, 5), data_set_consumer.some_array.shape)
        self.assertIsNot(some_array, data_set_consumer.some_array)
Exemplo n.º 13
0
    def run_process(self, signal_data: DataSet) -> DataSet:
        """ Extracts a 2D image from a readout dot responce measured with an acquisition device.

        Args:
            signal_data: The readout dot reponse data coming from the acquisition device. The data
                         user data of the data set should contain the width and resolution settings.

        Returns:
            A data set which contains a 2D image with the charge stability diagram.
        """
        width_x, width_y = signal_data.user_data['width']
        resolution_x, resolution_y = signal_data.user_data['resolution']

        output_signal_data = DataSet(user_data=signal_data.user_data)
        for data_array in signal_data.data_arrays.values():
            ProcessSawtooth2D.__check_sample_count_slow_sawtooth(
                data_array, width_y)
            ProcessSawtooth2D.__check_sample_count_fast_sawtooth(
                data_array, width_x, resolution_x, resolution_y)
            ProcessSawtooth2D.__check_matching_cuttoff(width_x, width_y,
                                                       resolution_x,
                                                       resolution_y)

            sample_count = len(data_array)
            samples_sawtooth_x = int(sample_count / resolution_y)
            samples_edge_x = int(sample_count / resolution_y * width_x)

            samples_egde_y = int(sample_count * width_y)
            offsets = np.arange(0,
                                samples_egde_y,
                                samples_sawtooth_x,
                                dtype=np.int)

            identifier = f'{data_array.name}_SawtoothProcessed2D'
            sliced_data = np.array(
                [data_array[o:o + samples_edge_x] for o in offsets])
            result_data = DataArray(identifier,
                                    data_array.label,
                                    preset_data=sliced_data)
            output_signal_data.add_array(result_data)

        return output_signal_data
Exemplo n.º 14
0
    def test_save_to_storage(self):
        data_set = DataSet()
        data_set.name = 'TheName'
        data_set.time_stamp = datetime.datetime(2018, 12, 24, 18)
        data_set.user_data = {'Data': 'stuff'}
        data_set.default_array_name = 'TheDefault'
        data_set.add_array(self.data_array)

        writer = MagicMock()
        data_set.add_storage_writer(writer)

        expected_calls = [
            call.sync_metadata_to_storage('name', 'TheName'),
            call.sync_metadata_to_storage('time_stamp',
                                          datetime.datetime(2018, 12, 24, 18)),
            call.sync_metadata_to_storage('user_data', {'Data': 'stuff'}),
            call.sync_metadata_to_storage('default_array_name', 'TheDefault')
        ]
        writer.assert_has_calls(expected_calls)
        writer.sync_add_data_array_to_storage.assert_called()
Exemplo n.º 15
0
    def test_integrate_with_data_set_io_add_data(self):
        io_reader, io_writer = MemoryDataSetIOFactory.get_reader_writer_pair()
        data_set_consumer = DataSet(storage_reader=io_reader)
        some_array = DataArray('some_array', 'label', shape=(5, 5))
        data_set_producer = DataSet(storage_writer=io_writer,
                                    data_arrays=some_array)
        data_set_producer.add_data((0, 0), {'some_array': 42})
        data_set_producer.add_data((1, 1), {'some_array': 25})

        data_set_consumer.sync_from_storage(-1)
        self.assertTrue(hasattr(data_set_consumer, 'some_array'))
        self.assertIsNot(some_array, data_set_consumer.some_array)
        self.assertEqual(42, data_set_consumer.some_array[0][0])
        self.assertEqual(25, data_set_consumer.some_array[1][1])
Exemplo n.º 16
0
    def test_sync_from_storage_meta_data(self):
        mock_queue = MagicMock()
        with patch('qilib.data_set.mongo_data_set_io_reader.MongoDataSetIO') as mock_io, patch(
                'qilib.data_set.mongo_data_set_io_reader.Thread') as thread, \
                patch('qilib.data_set.mongo_data_set_io_reader.Queue', return_value=mock_queue):
            reader = MongoDataSetIOReader(name='test')
            thread.assert_called_once()
            mock_io.assert_called_once_with('test',
                                            None,
                                            create_if_not_found=False,
                                            collection='data_sets',
                                            database='qilib')
            data_set = DataSet(storage_reader=reader)

            mock_queue.get.return_value = {
                'updateDescription': {
                    'updatedFields': {
                        'metadata': {
                            'name': 'test_name'
                        }
                    }
                }
            }
            data_set.sync_from_storage(-1)
            self.assertEqual('test_name', data_set.name)

            mock_queue.get.return_value = {
                'updateDescription': {
                    'updatedFields': {
                        'metadata.default_array_name': 'some_array'
                    }
                }
            }
            data_set.sync_from_storage(-1)
            self.assertEqual('some_array', data_set.default_array_name)
Exemplo n.º 17
0
    def run_process(self, signal_data: DataSet) -> DataSet:
        """ Extracts a 1D image from a readout dot responce measured with an acquisition device

        Args:
            signal_data: The readout dot reponse data coming from the acquisition device. The data
                         user data of the data set should contain the width and resolution settings.

        Returns:
            A data set which contains a 1D image with the charge stability diagram
        """

        data_set = DataSet(user_data=signal_data.user_data)
        width = data_set.user_data['width']

        for data_array in signal_data.data_arrays.values():
            sample_count = len(data_array)

            sliced_data = data_array[:int(sample_count * width)]
            identifier = f'{data_array.name}_SawtoothProcessed1D'
            data_set.add_array(DataArray(identifier, data_array.label, preset_data=sliced_data))

        return data_set
Exemplo n.º 18
0
    def test_metadata_triggers_update(self):
        name = 'Bobo'
        user_data = PythonJsonStructure(data='plata', snapshot=False)
        timestamp = datetime.datetime(2019, 12, 24)
        default_array_name = 'ThatsAGoodName'

        io_reader, io_writer = MemoryDataSetIOFactory.get_reader_writer_pair()
        data_set_consumer = DataSet(storage_reader=io_reader)
        data_set_producer = DataSet(storage_writer=io_writer)

        data_set_producer.name = name
        data_set_producer.user_data = user_data
        data_set_producer.time_stamp = timestamp
        data_set_producer.default_array_name = default_array_name

        data_set_consumer.sync_from_storage(-1)

        self.assertEqual(name, data_set_consumer.name)
        self.assertDictEqual(user_data, data_set_consumer.user_data)
        self.assertEqual(timestamp, data_set_consumer.time_stamp)
        self.assertEqual(default_array_name,
                         data_set_consumer.default_array_name)
Exemplo n.º 19
0
    def test_add_data_set_arrays(self):
        x_points = np.array(range(0, 2))
        y_points = np.array(range(0, 2))
        x = DataArray(name="x",
                      label="x-axis",
                      unit="mV",
                      is_setpoint=True,
                      preset_data=x_points)
        y = DataArray(name="y",
                      label="y-axis",
                      unit="mV",
                      is_setpoint=True,
                      preset_data=np.tile(np.array(y_points), [x.size, 1]))
        z = DataArray(name="z",
                      label="z-axis",
                      unit="ma",
                      set_arrays=(x, y),
                      preset_data=np.NaN * np.ones(
                          (x_points.size, y_points.size)))
        data_set = DataSet(data_arrays=z)
        data_set.add_data((1, 0), {'y': 23})

        self.assertEqual(data_set.y[(1, 0)], 23)
Exemplo n.º 20
0
    def test_add_data(self):
        some_array = DataArray('some_array', 'label', shape=(5, 5))
        data_set = DataSet(data_arrays=some_array)

        data_set.add_data((4, 4), {'some_array': 42})
        self.assertEqual(42, some_array[4][4])

        data_set.add_data(3, {'some_array': [1, 2, 3, 4, 5]})
        self.assertListEqual([1, 2, 3, 4, 5], list(some_array[3]))
Exemplo n.º 21
0
 def test_constructor_multiple_set_arrays(self):
     storage = MagicMock(spec=MemoryDataSetIOWriter)
     name = 'ItsAName'
     array_name = self.data_array.name
     user_data = {'some': 'data'}
     data_set = DataSet(storage_writer=storage,
                        name=name,
                        user_data=user_data,
                        data_arrays=self.data_array,
                        set_arrays=[self.set_y, self.set_x])
     self.assertEqual([storage], data_set.storage)
     self.assertEqual(name, data_set.name)
     self.assertDictEqual(user_data, data_set.user_data)
     self.assertEqual(self.data_array, data_set.data_arrays[array_name])
     self.assertEqual(array_name, data_set.default_array_name)
Exemplo n.º 22
0
    def test_sync_from_storage_array_update(self):
        mock_queue = MagicMock()
        with patch('qilib.data_set.mongo_data_set_io_reader.MongoDataSetIO') as mock_io, patch(
                'qilib.data_set.mongo_data_set_io_reader.Thread') as thread, \
                patch('qilib.data_set.mongo_data_set_io_reader.Queue', return_value=mock_queue):
            reader = MongoDataSetIOReader(name='test')
            thread.assert_called_once()
            mock_io.assert_called_once_with('test',
                                            None,
                                            create_if_not_found=False,
                                            collection='data_sets',
                                            database='qilib')
            data_set = DataSet(storage_reader=reader)
            data_array = DataArray(name='test_array',
                                   label='lab',
                                   shape=(2, 2))
            data_set.add_array(data_array)

            mock_queue.get.return_value = {
                'updateDescription': {
                    'updatedFields': {
                        'array_updates': [[[0, 0], {
                            'test_array': 42
                        }], [[0, 1], {
                            'test_array': 25
                        }]]
                    }
                }
            }
            data_set.sync_from_storage(-1)
            self.assertListEqual([42, 25], list(data_set.test_array[0]))

            mock_queue.get.return_value = {
                'updateDescription': {
                    'updatedFields': {
                        'array_updates.1': [1, {
                            'test_array': [67, 67]
                        }]
                    }
                }
            }
            data_set.sync_from_storage(-1)
            self.assertListEqual([67, 67], list(data_set.test_array[1]))
Exemplo n.º 23
0
 def test_add_array_duplicate_raises_error(self):
     name = 'some_array'
     data_array = DataArray(name,
                            'label',
                            preset_data=np.array([1, 2, 3, 4, 5]))
     data_set = DataSet()
     data_set.add_array(data_array)
     with self.assertRaises(ValueError) as error:
         data_set.add_array(data_array)
     self.assertEqual(
         ("DataSet already contains an array with the name '{}'".format(
             name), ), error.exception.args)
Exemplo n.º 24
0
    def test_add_data_higher_dimensions(self):
        some_array = DataArray('some_array', 'label', shape=(5, 5, 5, 5))
        data_set = DataSet(data_arrays=some_array)

        data_set.add_data((3, 3, 3, 3), {'some_array': 0.42})
        self.assertEqual(0.42, some_array[3][3][3][3])

        double_array = [[1, 2, 3, 4, 5], [1, 2, 3, 4, 5], [1, 2, 3, 4, 5],
                        [1, 2, 3, 4, 5], [1, 2, 3, 4, 5]]
        data_set.add_data((2, 2), {'some_array': double_array})
        self.assertTrue(np.array_equal(double_array, some_array[2][2]))
        self.assertFalse(np.array_equal(double_array, some_array[2][1]))
Exemplo n.º 25
0
    def test_run():
        with patch('qtt.measurements.post_processing.interfaces.signal_processor_interface.SignalProcessorInterface',
                   spec=SignalProcessorInterface) as spi:
            class DummySignalProcessor(spi):
                def __init__(self):
                    self._signal_data = None

                def run_process(self, signal_data: DataSet) -> DataSet:
                    self._signal_data = signal_data
                    return signal_data

        signal_processor_runner = SignalProcessorRunner()
        signal_processor_runner.add_signal_processor(DummySignalProcessor())

        data_set = DataSet()
        signal_processor_runner.run(data_set)
        spi.run_process.assert_called_once()
        spi.run_process.assert_called_with(data_set)
Exemplo n.º 26
0
 def test_add_array_with_bad_name(self):
     data_array = DataArray('this is not a good name',
                            'label',
                            preset_data=np.array([1, 2, 3, 4, 5]))
     data_set = DataSet()
     with self.assertRaisesRegex(
             SyntaxError,
             "'this is not a good name' is an invalid name for an identifier."
     ):
         data_set.add_array(data_array)
     data_array.name = 99
     with self.assertRaisesRegex(
             ValueError, "Array name has to be string, not <class 'int'>"):
         data_set.add_array(data_array)
Exemplo n.º 27
0
    def test_string(self):
        name = 'ItsAName'
        array_name = 'ItsAnArray'
        user_data = {'some': 'data'}

        x_points = np.array(range(0, 10))
        y_points = np.array(range(0, 5))
        x = DataArray(name='x',
                      label='x-axis',
                      unit='mV',
                      is_setpoint=True,
                      preset_data=np.array(x_points))
        y = DataArray(name='y',
                      label='y-axis',
                      unit='mV',
                      is_setpoint=True,
                      set_arrays=(x, ),
                      preset_data=np.tile(np.array(y_points), [x.size, 1]))
        z = DataArray(name=array_name,
                      label='z-axis',
                      unit='ma',
                      set_arrays=[y, x],
                      preset_data=np.NaN * np.ones(
                          (x_points.size, y_points.size)))
        other_z = DataArray(name='other_array',
                            label='z-axis',
                            unit='ma',
                            set_arrays=[y, x],
                            preset_data=np.NaN * np.ones(
                                (x_points.size, y_points.size)))

        data_set = DataSet(name=name,
                           user_data=user_data,
                           data_arrays=[z, other_z],
                           set_arrays=[y, x])

        expected = "DataSet: ItsAName\n  name        | label  | unit | shape   | setpoint\n  ItsAnArray  | z-axis | " \
                   "ma   | (10, 5) | False\n  other_array | z-axis | ma   | (10, 5) | False\n  y           | y-axis |" \
                   " mV   | (10, 5) | True\n  x           | x-axis | mV   | (10,)   | True"
        actual = str(data_set)
        self.assertEqual(expected, actual)
Exemplo n.º 28
0
 def test_bind_data_set(self):
     mock_mongo_data_set_io = MagicMock()
     with patch('qilib.data_set.mongo_data_set_io_reader.MongoDataSetIO',
                return_value=mock_mongo_data_set_io) as mock_io, \
             patch('qilib.data_set.mongo_data_set_io_reader.Thread') as thread:
         mock_mongo_data_set_io.get_document.return_value = {
             'name': 'test',
             'metadata': {
                 'default_array_name': 'array'
             }
         }
         reader = MongoDataSetIOReader(name='test')
         thread.assert_called_once()
         mock_io.assert_called_once_with('test',
                                         None,
                                         create_if_not_found=False,
                                         collection='data_sets',
                                         database='qilib')
         data_set = DataSet()
         reader.bind_data_set(data_set)
         self.assertEqual('test', data_set.name)
         self.assertEqual('array', data_set.default_array_name)
Exemplo n.º 29
0
    def test_setters(self):
        data_set = DataSet()
        self.assertEqual('', data_set.name)
        self.assertIsInstance(data_set.time_stamp, datetime.datetime)
        self.assertIsNone(data_set.user_data)
        self.assertEqual("", data_set.default_array_name)

        data_set.name = 'TheName'
        data_set.time_stamp = datetime.datetime(2018, 12, 24, 18)
        data_set.user_data = {'Data': 'stuff'}
        data_set.default_array_name = 'TheDefault'

        self.assertEqual('TheName', data_set.name)
        self.assertEqual(datetime.datetime(2018, 12, 24, 18),
                         data_set.time_stamp)
        self.assertDictEqual({'Data': 'stuff'}, data_set.user_data)
        self.assertEqual("TheDefault", data_set.default_array_name)
Exemplo n.º 30
0
    def test_set_arrays_property(self):
        x_points = np.array(range(0, 2))
        y_points = np.array(range(0, 2))
        x = DataArray(name="x",
                      label="x-axis",
                      unit="mV",
                      is_setpoint=True,
                      preset_data=x_points)
        y = DataArray(name="y",
                      label="y-axis",
                      unit="mV",
                      is_setpoint=True,
                      preset_data=np.tile(np.array(y_points), [x.size, 1]))
        z = DataArray(name="z",
                      label="z-axis",
                      unit="ma",
                      set_arrays=(x, y),
                      preset_data=np.NaN * np.ones(
                          (x_points.size, y_points.size)))
        data_set = DataSet(data_arrays=[z])

        self.assertEqual(len(data_set.set_arrays), 2)
        self.assertEqual(data_set.set_arrays['x'], x)
        self.assertEqual(data_set.set_arrays['y'], y)