Exemplo n.º 1
0
    def test_vqc_statevector(self, mode):
        """ vqc statevector test """
        aqua_globals.random_seed = 10598
        optimizer = COBYLA()
        data_preparation = self.data_preparation[mode]
        wavefunction = self.ryrz_wavefunction[mode]

        if mode == 'wrapped':
            warnings.filterwarnings('ignore', category=DeprecationWarning)
        # set up algorithm
        vqc = VQC(optimizer, data_preparation, wavefunction,
                  self.training_data, self.testing_data)

        if mode in ['circuit', 'library']:
            vqc._feature_map_params = self._sorted_data_params
            vqc._var_form_params = self._sorted_wavefunction_params
        else:
            warnings.filterwarnings('always', category=DeprecationWarning)

        quantum_instance = QuantumInstance(
            BasicAer.get_backend('statevector_simulator'),
            seed_simulator=aqua_globals.random_seed,
            seed_transpiler=aqua_globals.random_seed)
        result = vqc.run(quantum_instance)
        ref_train_loss = 0.1059404
        np.testing.assert_array_almost_equal(result['training_loss'],
                                             ref_train_loss,
                                             decimal=4)

        self.assertEqual(result['testing_accuracy'], 0.5)
Exemplo n.º 2
0
    def test_vqc_minibatching_with_gradient_support(self, mode):
        """ vqc minibatching with gradient support test """
        n_dim = 2  # dimension of each data point
        seed = 1024
        aqua_globals.random_seed = seed
        _, training_input, test_input, _ = ad_hoc_data(training_size=4,
                                                       test_size=2,
                                                       n=n_dim,
                                                       gap=0.3,
                                                       plot_data=False)
        backend = BasicAer.get_backend('statevector_simulator')
        optimizer = L_BFGS_B(maxfun=30)

        # set up data encoding circuit
        data_preparation = self.data_preparation[mode]

        # set up wavefunction
        if mode == 'wrapped':
            warnings.filterwarnings('ignore', category=DeprecationWarning)
            wavefunction = RYRZ(2, depth=1)
        else:
            wavefunction = TwoLocal(2, ['ry', 'rz'],
                                    'cz',
                                    reps=1,
                                    insert_barriers=True)
            theta = ParameterVector('theta', wavefunction.num_parameters)
            resorted = []
            for i in range(4):
                layer = wavefunction.ordered_parameters[4 * i:4 * (i + 1)]
                resorted += layer[::2]
                resorted += layer[1::2]
            wavefunction.assign_parameters(dict(zip(resorted, theta)),
                                           inplace=True)

        if mode == 'circuit':
            wavefunction = QuantumCircuit(2).compose(wavefunction)

        # set up algorithm
        vqc = VQC(optimizer,
                  data_preparation,
                  wavefunction,
                  training_input,
                  test_input,
                  minibatch_size=2)

        if mode in ['circuit', 'library']:
            vqc._feature_map_params = self._sorted_data_params
            vqc._var_form_params = list(theta)
        else:
            warnings.filterwarnings('always', category=DeprecationWarning)

        quantum_instance = QuantumInstance(backend,
                                           seed_simulator=seed,
                                           seed_transpiler=seed)
        result = vqc.run(quantum_instance)
        vqc_accuracy = 0.5
        self.log.debug(result['testing_accuracy'])
        self.assertAlmostEqual(result['testing_accuracy'],
                               vqc_accuracy,
                               places=3)
Exemplo n.º 3
0
    def test_vqc_on_wine(self, mode):
        """Test VQE on the wine test using circuits as feature map and variational form."""
        feature_dim = 4  # dimension of each data point
        training_dataset_size = 6
        testing_dataset_size = 3

        _, training_input, test_input, _ = wine(
            training_size=training_dataset_size,
            test_size=testing_dataset_size,
            n=feature_dim,
            plot_data=False)
        aqua_globals.random_seed = self.seed
        if mode == 'wrapped':
            warnings.filterwarnings('ignore', category=DeprecationWarning)
            data_preparation = SecondOrderExpansion(feature_dim)
            wavefunction = RYRZ(feature_dim, depth=1)
        else:
            data_preparation = ZZFeatureMap(feature_dim)
            x = data_preparation.ordered_parameters
            wavefunction = TwoLocal(feature_dim, ['ry', 'rz'],
                                    'cz',
                                    reps=1,
                                    insert_barriers=True)
            theta = ParameterVector('theta', wavefunction.num_parameters)
            resorted = []
            for i in range(2 * feature_dim):
                layer = wavefunction.ordered_parameters[2 * feature_dim * i:2 *
                                                        feature_dim * (i + 1)]
                resorted += layer[::2]
                resorted += layer[1::2]
            wavefunction.assign_parameters(dict(zip(resorted, theta)),
                                           inplace=True)

        if mode == 'circuit':
            data_preparation = QuantumCircuit(feature_dim).compose(
                data_preparation)
            wavefunction = QuantumCircuit(feature_dim).compose(wavefunction)

        vqc = VQC(COBYLA(maxiter=100), data_preparation, wavefunction,
                  training_input, test_input)

        # sort parameters for reproducibility
        if mode in ['circuit', 'library']:
            vqc._feature_map_params = list(x)
            vqc._var_form_params = list(theta)
        else:
            warnings.filterwarnings('always', category=DeprecationWarning)

        result = vqc.run(
            QuantumInstance(BasicAer.get_backend('statevector_simulator'),
                            shots=1024,
                            seed_simulator=aqua_globals.random_seed,
                            seed_transpiler=aqua_globals.random_seed))
        self.log.debug(result['testing_accuracy'])

        self.assertLess(result['testing_accuracy'], 0.6)
Exemplo n.º 4
0
    def test_vqc_callback(self, mode):
        """ vqc callback test """
        history = {
            'eval_count': [],
            'parameters': [],
            'cost': [],
            'batch_index': []
        }

        def store_intermediate_result(eval_count, parameters, cost,
                                      batch_index):
            history['eval_count'].append(eval_count)
            history['parameters'].append(parameters)
            history['cost'].append(cost)
            history['batch_index'].append(batch_index)

        aqua_globals.random_seed = self.seed
        backend = BasicAer.get_backend('qasm_simulator')

        optimizer = COBYLA(maxiter=3)
        data_preparation = self.data_preparation[mode]
        wavefunction = self.ryrz_wavefunction[mode]

        if mode == 'wrapped':
            warnings.filterwarnings('ignore', category=DeprecationWarning)

        # set up algorithm
        vqc = VQC(optimizer,
                  data_preparation,
                  wavefunction,
                  self.training_data,
                  self.testing_data,
                  callback=store_intermediate_result)

        if mode in ['circuit', 'library']:
            vqc._feature_map_params = self._sorted_data_params
            vqc._var_form_params = self._sorted_wavefunction_params
        else:
            warnings.filterwarnings('always', category=DeprecationWarning)

        quantum_instance = QuantumInstance(backend,
                                           shots=1024,
                                           seed_simulator=self.seed,
                                           seed_transpiler=self.seed)
        vqc.run(quantum_instance)

        self.assertTrue(
            all(isinstance(count, int) for count in history['eval_count']))
        self.assertTrue(
            all(isinstance(cost, float) for cost in history['cost']))
        self.assertTrue(
            all(isinstance(index, int) for index in history['batch_index']))
        for params in history['parameters']:
            self.assertTrue(all(isinstance(param, float) for param in params))
Exemplo n.º 5
0
    def test_vqc_with_max_evals_grouped(self, use_circuits):
        """ vqc with max evals grouped test """
        aqua_globals.random_seed = self.seed
        optimizer = SPSA(max_trials=10,
                         save_steps=1,
                         c0=4.0,
                         c1=0.1,
                         c2=0.602,
                         c3=0.101,
                         c4=0.0,
                         skip_calibration=True)
        feature_map = SecondOrderExpansion(
            feature_dimension=get_feature_dimension(self.training_data),
            depth=2)
        var_form = RYRZ(num_qubits=feature_map.num_qubits, depth=3)

        # convert to circuit if circuits should be used
        if use_circuits:
            x = ParameterVector('x', feature_map.feature_dimension)
            feature_map = feature_map.construct_circuit(x)
            theta = ParameterVector('theta', var_form.num_parameters)
            var_form = var_form.construct_circuit(theta)

        # set up algorithm
        vqc = VQC(optimizer,
                  feature_map,
                  var_form,
                  self.training_data,
                  self.testing_data,
                  max_evals_grouped=2)

        # sort parameters for reproducibility
        if use_circuits:
            vqc._feature_map_params = list(x)
            vqc._var_form_params = list(theta)

        quantum_instance = QuantumInstance(
            BasicAer.get_backend('qasm_simulator'),
            shots=1024,
            seed_simulator=aqua_globals.random_seed,
            seed_transpiler=aqua_globals.random_seed)
        result = vqc.run(quantum_instance)
        np.testing.assert_array_almost_equal(result['opt_params'],
                                             self.ref_opt_params,
                                             decimal=8)
        np.testing.assert_array_almost_equal(result['training_loss'],
                                             self.ref_train_loss,
                                             decimal=8)

        self.assertEqual(1.0, result['testing_accuracy'])
Exemplo n.º 6
0
    def test_vqc_minibatching_with_gradient_support(self, use_circuits):
        """ vqc minibatching with gradient support test """
        n_dim = 2  # dimension of each data point
        seed = 1024
        aqua_globals.random_seed = seed
        _, training_input, test_input, _ = ad_hoc_data(training_size=4,
                                                       test_size=2,
                                                       n=n_dim,
                                                       gap=0.3,
                                                       plot_data=False)
        backend = BasicAer.get_backend('statevector_simulator')
        num_qubits = n_dim
        optimizer = L_BFGS_B(maxfun=30)
        feature_map = SecondOrderExpansion(feature_dimension=num_qubits,
                                           depth=2)
        var_form = RYRZ(num_qubits=num_qubits, depth=1)

        # convert to circuit if circuits should be used
        if use_circuits:
            x = ParameterVector('x', feature_map.feature_dimension)
            feature_map = feature_map.construct_circuit(x)
            theta = ParameterVector('theta', var_form.num_parameters)
            var_form = var_form.construct_circuit(theta)

        # set up algorithm
        vqc = VQC(optimizer,
                  feature_map,
                  var_form,
                  training_input,
                  test_input,
                  minibatch_size=2)

        # sort parameters for reproducibility
        if use_circuits:
            vqc._feature_map_params = list(x)
            vqc._var_form_params = list(theta)

        quantum_instance = QuantumInstance(backend,
                                           seed_simulator=seed,
                                           seed_transpiler=seed)
        result = vqc.run(quantum_instance)
        vqc_accuracy = 0.5
        self.log.debug(result['testing_accuracy'])
        self.assertAlmostEqual(result['testing_accuracy'],
                               vqc_accuracy,
                               places=3)
Exemplo n.º 7
0
    def test_vqc_with_max_evals_grouped(self, mode):
        """ vqc with max evals grouped test """
        aqua_globals.random_seed = self.seed
        optimizer = SPSA(max_trials=10,
                         save_steps=1,
                         c0=4.0,
                         c1=0.1,
                         c2=0.602,
                         c3=0.101,
                         c4=0.0,
                         skip_calibration=True)
        data_preparation = self.data_preparation[mode]
        wavefunction = self.ryrz_wavefunction[mode]

        if mode == 'wrapped':
            warnings.filterwarnings('ignore', category=DeprecationWarning)
        # set up algorithm
        vqc = VQC(optimizer,
                  data_preparation,
                  wavefunction,
                  self.training_data,
                  self.testing_data,
                  max_evals_grouped=2)

        if mode in ['circuit', 'library']:
            vqc._feature_map_params = self._sorted_data_params
            vqc._var_form_params = self._sorted_wavefunction_params
        else:
            warnings.filterwarnings('always', category=DeprecationWarning)

        quantum_instance = QuantumInstance(
            BasicAer.get_backend('qasm_simulator'),
            shots=1024,
            seed_simulator=aqua_globals.random_seed,
            seed_transpiler=aqua_globals.random_seed)
        result = vqc.run(quantum_instance)
        np.testing.assert_array_almost_equal(result['opt_params'],
                                             self.ref_opt_params,
                                             decimal=8)
        np.testing.assert_array_almost_equal(result['training_loss'],
                                             self.ref_train_loss,
                                             decimal=8)

        self.assertEqual(1.0, result['testing_accuracy'])
Exemplo n.º 8
0
    def test_vqc_minibatching_no_gradient_support(self, mode):
        """ vqc minibatching with no gradient support test """
        n_dim = 2  # dimension of each data point
        seed = 1024
        aqua_globals.random_seed = seed
        _, training_input, test_input, _ = ad_hoc_data(training_size=6,
                                                       test_size=3,
                                                       n=n_dim,
                                                       gap=0.3,
                                                       plot_data=False)
        backend = BasicAer.get_backend('statevector_simulator')
        optimizer = COBYLA(maxiter=40)
        data_preparation = self.data_preparation[mode]
        wavefunction = self.ryrz_wavefunction[mode]

        if mode == 'wrapped':
            warnings.filterwarnings('ignore', category=DeprecationWarning)

        # set up algorithm
        vqc = VQC(optimizer,
                  data_preparation,
                  wavefunction,
                  training_input,
                  test_input,
                  minibatch_size=2)

        if mode in ['circuit', 'library']:
            vqc._feature_map_params = self._sorted_data_params
            vqc._var_form_params = self._sorted_wavefunction_params
        else:
            warnings.filterwarnings('always', category=DeprecationWarning)

        quantum_instance = QuantumInstance(backend,
                                           seed_simulator=seed,
                                           seed_transpiler=seed,
                                           optimization_level=0)
        result = vqc.run(quantum_instance)
        self.log.debug(result['testing_accuracy'])
        self.assertGreaterEqual(result['testing_accuracy'], 0.5)
Exemplo n.º 9
0
    def test_vqc_on_wine(self, use_circuits):
        """Test VQE on the wine test using circuits as feature map and variational form."""
        feature_dim = 4  # dimension of each data point
        training_dataset_size = 6
        testing_dataset_size = 3

        _, training_input, test_input, _ = wine(
            training_size=training_dataset_size,
            test_size=testing_dataset_size,
            n=feature_dim,
            plot_data=False)
        aqua_globals.random_seed = self.seed
        feature_map = SecondOrderExpansion(feature_dimension=feature_dim)
        var_form = RYRZ(feature_map.num_qubits, depth=1)

        # convert to circuit if circuits should be used
        if use_circuits:
            x = ParameterVector('x', feature_map.feature_dimension)
            feature_map = feature_map.construct_circuit(x)
            theta = ParameterVector('theta', var_form.num_parameters)
            var_form = var_form.construct_circuit(theta)

        vqc = VQC(COBYLA(maxiter=100), feature_map, var_form, training_input,
                  test_input)

        # sort parameters for reproducibility
        if use_circuits:
            vqc._feature_map_params = list(x)
            vqc._var_form_params = list(theta)

        result = vqc.run(
            QuantumInstance(BasicAer.get_backend('statevector_simulator'),
                            shots=1024,
                            seed_simulator=aqua_globals.random_seed,
                            seed_transpiler=aqua_globals.random_seed))
        self.log.debug(result['testing_accuracy'])

        self.assertLess(result['testing_accuracy'], 0.6)
Exemplo n.º 10
0
    def test_vqc_statevector(self, use_circuits):
        """ vqc statevector test """
        aqua_globals.random_seed = 10598
        optimizer = COBYLA()
        feature_map = SecondOrderExpansion(
            feature_dimension=get_feature_dimension(self.training_data),
            depth=2)
        var_form = RYRZ(num_qubits=feature_map.num_qubits, depth=3)

        # convert to circuit if circuits should be used
        if use_circuits:
            x = ParameterVector('x', feature_map.feature_dimension)
            feature_map = feature_map.construct_circuit(x)
            theta = ParameterVector('theta', var_form.num_parameters)
            var_form = var_form.construct_circuit(theta)

        # set up algorithm
        vqc = VQC(optimizer, feature_map, var_form, self.training_data,
                  self.testing_data)

        # sort parameters for reproducibility
        if use_circuits:
            vqc._feature_map_params = list(x)
            vqc._var_form_params = list(theta)

        quantum_instance = QuantumInstance(
            BasicAer.get_backend('statevector_simulator'),
            seed_simulator=aqua_globals.random_seed,
            seed_transpiler=aqua_globals.random_seed)
        result = vqc.run(quantum_instance)
        ref_train_loss = 0.1059404
        np.testing.assert_array_almost_equal(result['training_loss'],
                                             ref_train_loss,
                                             decimal=4)

        self.assertEqual(result['testing_accuracy'], 0.5)
Exemplo n.º 11
0
    def test_save_and_load_model(self, mode):
        """ save and load model test """
        aqua_globals.random_seed = self.seed
        backend = BasicAer.get_backend('qasm_simulator')

        optimizer = SPSA(max_trials=10,
                         save_steps=1,
                         c0=4.0,
                         skip_calibration=True)
        data_preparation = self.data_preparation[mode]
        wavefunction = self.ryrz_wavefunction[mode]

        if mode == 'wrapped':
            warnings.filterwarnings('ignore', category=DeprecationWarning)
        # set up algorithm
        vqc = VQC(optimizer, data_preparation, wavefunction,
                  self.training_data, self.testing_data)

        if mode in ['circuit', 'library']:
            vqc._feature_map_params = self._sorted_data_params
            vqc._var_form_params = self._sorted_wavefunction_params

        quantum_instance = QuantumInstance(backend,
                                           shots=1024,
                                           seed_simulator=self.seed,
                                           seed_transpiler=self.seed)
        result = vqc.run(quantum_instance)

        np.testing.assert_array_almost_equal(result['opt_params'],
                                             self.ref_opt_params,
                                             decimal=4)
        np.testing.assert_array_almost_equal(result['training_loss'],
                                             self.ref_train_loss,
                                             decimal=8)

        self.assertEqual(1.0, result['testing_accuracy'])

        file_path = self.get_resource_path('vqc_test.npz')
        vqc.save_model(file_path)

        self.assertTrue(os.path.exists(file_path))

        loaded_vqc = VQC(optimizer, data_preparation, wavefunction,
                         self.training_data, None)

        # sort parameters for reproducibility
        if mode in ['circuit', 'library']:
            loaded_vqc._feature_map_params = self._sorted_data_params
            loaded_vqc._var_form_params = self._sorted_wavefunction_params
        else:
            warnings.filterwarnings('always', category=DeprecationWarning)

        loaded_vqc.load_model(file_path)

        np.testing.assert_array_almost_equal(loaded_vqc.ret['opt_params'],
                                             self.ref_opt_params,
                                             decimal=4)

        loaded_test_acc = loaded_vqc.test(vqc.test_dataset[0],
                                          vqc.test_dataset[1],
                                          quantum_instance)
        self.assertEqual(result['testing_accuracy'], loaded_test_acc)

        predicted_probs, predicted_labels = loaded_vqc.predict(
            self.testing_data['A'], quantum_instance)
        np.testing.assert_array_almost_equal(predicted_probs,
                                             self.ref_prediction_a_probs,
                                             decimal=8)
        np.testing.assert_array_equal(predicted_labels,
                                      self.ref_prediction_a_label)

        if os.path.exists(file_path):
            try:
                os.remove(file_path)
            except Exception:  # pylint: disable=broad-except
                pass
Exemplo n.º 12
0
    def test_save_and_load_model(self, use_circuits):
        """ save and load model test """
        aqua_globals.random_seed = self.seed
        backend = BasicAer.get_backend('qasm_simulator')

        num_qubits = 2
        optimizer = SPSA(max_trials=10,
                         save_steps=1,
                         c0=4.0,
                         skip_calibration=True)
        feature_map = SecondOrderExpansion(feature_dimension=num_qubits,
                                           depth=2)
        var_form = RYRZ(num_qubits=num_qubits, depth=3)

        # convert to circuit if circuits should be used
        if use_circuits:
            x = ParameterVector('x', feature_map.feature_dimension)
            feature_map = feature_map.construct_circuit(x)
            theta = ParameterVector('theta', var_form.num_parameters)
            var_form = var_form.construct_circuit(theta)

        # set up algorithm
        vqc = VQC(optimizer, feature_map, var_form, self.training_data,
                  self.testing_data)

        # sort parameters for reproducibility
        if use_circuits:
            vqc._feature_map_params = list(x)
            vqc._var_form_params = list(theta)

        quantum_instance = QuantumInstance(backend,
                                           shots=1024,
                                           seed_simulator=self.seed,
                                           seed_transpiler=self.seed)
        result = vqc.run(quantum_instance)

        np.testing.assert_array_almost_equal(result['opt_params'],
                                             self.ref_opt_params,
                                             decimal=4)
        np.testing.assert_array_almost_equal(result['training_loss'],
                                             self.ref_train_loss,
                                             decimal=8)

        self.assertEqual(1.0, result['testing_accuracy'])

        file_path = self.get_resource_path('vqc_test.npz')
        vqc.save_model(file_path)

        self.assertTrue(os.path.exists(file_path))

        loaded_vqc = VQC(optimizer, feature_map, var_form, self.training_data,
                         None)

        # sort parameters for reproducibility
        if use_circuits:
            loaded_vqc._feature_map_params = list(x)
            loaded_vqc._var_form_params = list(theta)

        loaded_vqc.load_model(file_path)

        np.testing.assert_array_almost_equal(loaded_vqc.ret['opt_params'],
                                             self.ref_opt_params,
                                             decimal=4)

        loaded_test_acc = loaded_vqc.test(vqc.test_dataset[0],
                                          vqc.test_dataset[1],
                                          quantum_instance)
        self.assertEqual(result['testing_accuracy'], loaded_test_acc)

        predicted_probs, predicted_labels = loaded_vqc.predict(
            self.testing_data['A'], quantum_instance)
        np.testing.assert_array_almost_equal(predicted_probs,
                                             self.ref_prediction_a_probs,
                                             decimal=8)
        np.testing.assert_array_equal(predicted_labels,
                                      self.ref_prediction_a_label)

        if os.path.exists(file_path):
            try:
                os.remove(file_path)
            except Exception:  # pylint: disable=broad-except
                pass