Exemplo n.º 1
0
 def setUp(self):
     super().setUp()
     instruction_durations = InstructionDurations()
     instruction_durations.update(
         [
             ("rz", (0,), 0),
             ("rz", (1,), 0),
             ("x", (0,), 160),
             ("x", (1,), 160),
             ("sx", (0,), 160),
             ("sx", (1,), 160),
             ("cx", (0, 1), 800),
             ("cx", (1, 0), 800),
             ("measure", None, 1600),
         ]
     )
     self.time_conversion_pass = TimeUnitConversion(inst_durations=instruction_durations)
     # reproduce old behavior of 0.20.0 before #7655
     # currently default write latency is 0
     self.scheduling_pass = ALAPSchedule(
         durations=instruction_durations,
         clbit_write_latency=1600,
         conditional_latency=0,
     )
     self.align_measure_pass = AlignMeasures(alignment=16)
Exemplo n.º 2
0
    def test_deprecated_align_measure(self):
        """Test if old AlignMeasures can be still used and warning is raised."""
        circuit = QuantumCircuit(1, 1)
        circuit.x(0)
        circuit.delay(100)
        circuit.measure(0, 0)

        with self.assertWarns(PendingDeprecationWarning):
            pm_old = PassManager([
                ALAPSchedule(durations=self.instruction_durations),
                AlignMeasures(alignment=16),
            ])

        pm_new = PassManager([
            ALAPSchedule(durations=self.instruction_durations),
            AlignMeasures(alignment=16),
        ])

        self.assertEqual(pm_old.run(circuit), pm_new.run(circuit))
Exemplo n.º 3
0
    def test_hanh_echo_experiment_type(self):
        """Test Hahn echo experiment type circuit.

        (input)

             ┌────┐┌────────────────┐┌───┐┌────────────────┐┌────┐┌─┐
        q_0: ┤ √X ├┤ Delay(100[dt]) ├┤ X ├┤ Delay(100[dt]) ├┤ √X ├┤M├
             └────┘└────────────────┘└───┘└────────────────┘└────┘└╥┘
        c: 1/══════════════════════════════════════════════════════╩═
                                                                   0

        (output)

             ┌────┐┌────────────────┐┌───┐┌────────────────┐┌────┐┌──────────────┐┌─┐
        q_0: ┤ √X ├┤ Delay(100[dt]) ├┤ X ├┤ Delay(100[dt]) ├┤ √X ├┤ Delay(8[dt]) ├┤M├
             └────┘└────────────────┘└───┘└────────────────┘└────┘└──────────────┘└╥┘
        c: 1/══════════════════════════════════════════════════════════════════════╩═
                                                                                   0

        This type of experiment doesn't change duration of interest (two in the middle).
        However induces slight delay less than alignment * dt before measurement.
        This might induce extra amplitude damping error.
        """
        circuit = QuantumCircuit(1, 1)
        circuit.sx(0)
        circuit.delay(100, 0, unit="dt")
        circuit.x(0)
        circuit.delay(100, 0, unit="dt")
        circuit.sx(0)
        circuit.measure(0, 0)

        pm = PassManager([
            # reproduce old behavior of 0.20.0 before #7655
            # currently default write latency is 0
            ALAPSchedule(
                durations=self.instruction_durations,
                clbit_write_latency=1600,
                conditional_latency=0,
            ),
            PadDelay(),
            AlignMeasures(alignment=16),
        ])

        aligned_circuit = pm.run(circuit)

        ref_circuit = QuantumCircuit(1, 1)
        ref_circuit.sx(0)
        ref_circuit.delay(100, 0, unit="dt")
        ref_circuit.x(0)
        ref_circuit.delay(100, 0, unit="dt")
        ref_circuit.sx(0)
        ref_circuit.delay(8, 0, unit="dt")
        ref_circuit.measure(0, 0)

        self.assertEqual(aligned_circuit, ref_circuit)
Exemplo n.º 4
0
    def test_mid_circuit_measure(self):
        """Test circuit with mid circuit measurement.

        (input)

             ┌───┐┌────────────────┐┌─┐┌───────────────┐┌───┐┌────────────────┐┌─┐
        q_0: ┤ X ├┤ Delay(100[dt]) ├┤M├┤ Delay(10[dt]) ├┤ X ├┤ Delay(120[dt]) ├┤M├
             └───┘└────────────────┘└╥┘└───────────────┘└───┘└────────────────┘└╥┘
        c: 2/════════════════════════╩══════════════════════════════════════════╩═
                                     0                                          1

        (output)

             ┌───┐┌────────────────┐┌─┐┌───────────────┐┌───┐┌────────────────┐┌─┐
        q_0: ┤ X ├┤ Delay(112[dt]) ├┤M├┤ Delay(10[dt]) ├┤ X ├┤ Delay(134[dt]) ├┤M├
             └───┘└────────────────┘└╥┘└───────────────┘└───┘└────────────────┘└╥┘
        c: 2/════════════════════════╩══════════════════════════════════════════╩═
                                     0                                          1

        Extra delay is always added to the existing delay right before the measurement.
        Delay after measurement is unchanged.
        """
        circuit = QuantumCircuit(1, 2)
        circuit.x(0)
        circuit.delay(100, 0, unit="dt")
        circuit.measure(0, 0)
        circuit.delay(10, 0, unit="dt")
        circuit.x(0)
        circuit.delay(120, 0, unit="dt")
        circuit.measure(0, 1)

        pm = PassManager([
            # reproduce old behavior of 0.20.0 before #7655
            # currently default write latency is 0
            ALAPSchedule(
                durations=self.instruction_durations,
                clbit_write_latency=1600,
                conditional_latency=0,
            ),
            PadDelay(),
            AlignMeasures(alignment=16),
        ])

        aligned_circuit = pm.run(circuit)

        ref_circuit = QuantumCircuit(1, 2)
        ref_circuit.x(0)
        ref_circuit.delay(112, 0, unit="dt")
        ref_circuit.measure(0, 0)
        ref_circuit.delay(10, 0, unit="dt")
        ref_circuit.x(0)
        ref_circuit.delay(134, 0, unit="dt")
        ref_circuit.measure(0, 1)

        self.assertEqual(aligned_circuit, ref_circuit)
Exemplo n.º 5
0
    def test_t1_experiment_type(self):
        """Test T1 experiment type circuit.

        (input)

             ┌───┐┌────────────────┐┌─┐
        q_0: ┤ X ├┤ Delay(100[dt]) ├┤M├
             └───┘└────────────────┘└╥┘
        c: 1/════════════════════════╩═
                                     0

        (aligned)

             ┌───┐┌────────────────┐┌─┐
        q_0: ┤ X ├┤ Delay(112[dt]) ├┤M├
             └───┘└────────────────┘└╥┘
        c: 1/════════════════════════╩═
                                     0

        This type of experiment slightly changes delay duration of interest.
        However the quantization error should be less than alignment * dt.
        """
        circuit = QuantumCircuit(1, 1)
        circuit.x(0)
        circuit.delay(100, 0, unit="dt")
        circuit.measure(0, 0)

        pm = PassManager([
            # reproduce old behavior of 0.20.0 before #7655
            # currently default write latency is 0
            ALAPSchedule(
                durations=self.instruction_durations,
                clbit_write_latency=1600,
                conditional_latency=0,
            ),
            PadDelay(),
            AlignMeasures(alignment=16),
        ])

        aligned_circuit = pm.run(circuit)

        ref_circuit = QuantumCircuit(1, 1)
        ref_circuit.x(0)
        ref_circuit.delay(112, 0, unit="dt")
        ref_circuit.measure(0, 0)

        self.assertEqual(aligned_circuit, ref_circuit)
Exemplo n.º 6
0
    def test_alignment_is_not_processed(self):
        """Test avoid pass processing if delay is aligned."""
        circuit = QuantumCircuit(2, 2)
        circuit.x(0)
        circuit.delay(160, 0, unit="dt")
        circuit.measure(0, 0)
        circuit.cx(0, 1)
        circuit.measure(1, 1)
        circuit.cx(0, 1)
        circuit.measure(0, 0)

        # pre scheduling is not necessary because alignment is skipped
        # this is to minimize breaking changes to existing code.
        pm = PassManager(AlignMeasures(alignment=16))
        aligned_circuit = pm.run(circuit)

        self.assertEqual(aligned_circuit, circuit)
 def setUp(self):
     super().setUp()
     instruction_durations = InstructionDurations()
     instruction_durations.update([
         ("rz", (0, ), 0),
         ("rz", (1, ), 0),
         ("x", (0, ), 160),
         ("x", (1, ), 160),
         ("sx", (0, ), 160),
         ("sx", (1, ), 160),
         ("cx", (0, 1), 800),
         ("cx", (1, 0), 800),
         ("measure", None, 1600),
     ])
     self.time_conversion_pass = TimeUnitConversion(
         inst_durations=instruction_durations)
     self.scheduling_pass = ALAPSchedule(durations=instruction_durations)
     self.align_measure_pass = AlignMeasures(alignment=16)
Exemplo n.º 8
0
def level_3_pass_manager(pass_manager_config: PassManagerConfig) -> PassManager:
    """Level 3 pass manager: heavy optimization by noise adaptive qubit mapping and
    gate cancellation using commutativity rules and unitary synthesis.

    This pass manager applies the user-given initial layout. If none is given, a search
    for a perfect layout (i.e. one that satisfies all 2-qubit interactions) is conducted.
    If no such layout is found, and device calibration information is available, the
    circuit is mapped to the qubits with best readouts and to CX gates with highest fidelity.

    The pass manager then transforms the circuit to match the coupling constraints.
    It is then unrolled to the basis, and any flipped cx directions are fixed.
    Finally, optimizations in the form of commutative gate cancellation, resynthesis
    of two-qubit unitary blocks, and redundant reset removal are performed.

    Note:
        In simulators where ``coupling_map=None``, only the unrolling and
        optimization stages are done.

    Args:
        pass_manager_config: configuration of the pass manager.

    Returns:
        a level 3 pass manager.

    Raises:
        TranspilerError: if the passmanager config is invalid.
    """
    basis_gates = pass_manager_config.basis_gates
    inst_map = pass_manager_config.inst_map
    coupling_map = pass_manager_config.coupling_map
    initial_layout = pass_manager_config.initial_layout
    layout_method = pass_manager_config.layout_method or "sabre"
    routing_method = pass_manager_config.routing_method or "sabre"
    translation_method = pass_manager_config.translation_method or "translator"
    scheduling_method = pass_manager_config.scheduling_method
    instruction_durations = pass_manager_config.instruction_durations
    seed_transpiler = pass_manager_config.seed_transpiler
    backend_properties = pass_manager_config.backend_properties
    approximation_degree = pass_manager_config.approximation_degree
    unitary_synthesis_method = pass_manager_config.unitary_synthesis_method
    timing_constraints = pass_manager_config.timing_constraints or TimingConstraints()
    unitary_synthesis_plugin_config = pass_manager_config.unitary_synthesis_plugin_config
    target = pass_manager_config.target

    # 1. Unroll to 1q or 2q gates
    _unroll3q = [
        # Use unitary synthesis for basis aware decomposition of UnitaryGates
        UnitarySynthesis(
            basis_gates,
            approximation_degree=approximation_degree,
            method=unitary_synthesis_method,
            plugin_config=unitary_synthesis_plugin_config,
            min_qubits=3,
        ),
        Unroll3qOrMore(),
    ]

    # 2. Layout on good qubits if calibration info available, otherwise on dense links
    _given_layout = SetLayout(initial_layout)

    def _choose_layout_condition(property_set):
        # layout hasn't been set yet
        return not property_set["layout"]

    def _csp_not_found_match(property_set):
        # If a layout hasn't been set by the time we run csp we need to run layout
        if property_set["layout"] is None:
            return True
        # if CSP layout stopped for any reason other than solution found we need
        # to run layout since CSP didn't converge.
        if (
            property_set["CSPLayout_stop_reason"] is not None
            and property_set["CSPLayout_stop_reason"] != "solution found"
        ):
            return True
        return False

    # 2a. If layout method is not set, first try a trivial layout
    _choose_layout_0 = (
        []
        if pass_manager_config.layout_method
        else [
            TrivialLayout(coupling_map),
            Layout2qDistance(coupling_map, property_name="trivial_layout_score"),
        ]
    )
    # 2b. If trivial layout wasn't perfect (ie no swaps are needed) then try
    # using CSP layout to find a perfect layout
    _choose_layout_1 = (
        []
        if pass_manager_config.layout_method
        else CSPLayout(coupling_map, call_limit=10000, time_limit=60, seed=seed_transpiler)
    )

    def _trivial_not_perfect(property_set):
        # Verify that a trivial layout  is perfect. If trivial_layout_score > 0
        # the layout is not perfect. The layout property set is unconditionally
        # set by trivial layout so we clear that before running CSP
        if property_set["trivial_layout_score"] is not None:
            if property_set["trivial_layout_score"] != 0:
                return True
        return False

    # 2c. if CSP didn't converge on a solution use layout_method (dense).
    if layout_method == "trivial":
        _choose_layout_2 = TrivialLayout(coupling_map)
    elif layout_method == "dense":
        _choose_layout_2 = DenseLayout(coupling_map, backend_properties)
    elif layout_method == "noise_adaptive":
        _choose_layout_2 = NoiseAdaptiveLayout(backend_properties)
    elif layout_method == "sabre":
        _choose_layout_2 = SabreLayout(coupling_map, max_iterations=4, seed=seed_transpiler)
    else:
        raise TranspilerError("Invalid layout method %s." % layout_method)

    # 3. Extend dag/layout with ancillas using the full coupling map
    _embed = [FullAncillaAllocation(coupling_map), EnlargeWithAncilla(), ApplyLayout()]

    # 4. Swap to fit the coupling map
    _swap_check = CheckMap(coupling_map)

    def _swap_condition(property_set):
        return not property_set["is_swap_mapped"]

    _swap = [BarrierBeforeFinalMeasurements()]
    if routing_method == "basic":
        _swap += [BasicSwap(coupling_map)]
    elif routing_method == "stochastic":
        _swap += [StochasticSwap(coupling_map, trials=200, seed=seed_transpiler)]
    elif routing_method == "lookahead":
        _swap += [LookaheadSwap(coupling_map, search_depth=5, search_width=6)]
    elif routing_method == "sabre":
        _swap += [SabreSwap(coupling_map, heuristic="decay", seed=seed_transpiler)]
    elif routing_method == "none":
        _swap += [
            Error(
                msg=(
                    "No routing method selected, but circuit is not routed to device. "
                    "CheckMap Error: {check_map_msg}"
                ),
                action="raise",
            )
        ]
    else:
        raise TranspilerError("Invalid routing method %s." % routing_method)

    # 5. Unroll to the basis
    if translation_method == "unroller":
        _unroll = [Unroller(basis_gates)]
    elif translation_method == "translator":
        from qiskit.circuit.equivalence_library import SessionEquivalenceLibrary as sel

        _unroll = [
            UnitarySynthesis(
                basis_gates,
                approximation_degree=approximation_degree,
                coupling_map=coupling_map,
                backend_props=backend_properties,
                plugin_config=unitary_synthesis_plugin_config,
                method=unitary_synthesis_method,
            ),
            UnrollCustomDefinitions(sel, basis_gates),
            BasisTranslator(sel, basis_gates, target),
        ]
    elif translation_method == "synthesis":
        _unroll = [
            UnitarySynthesis(
                basis_gates,
                approximation_degree=approximation_degree,
                coupling_map=coupling_map,
                backend_props=backend_properties,
                method=unitary_synthesis_method,
                plugin_config=unitary_synthesis_plugin_config,
                min_qubits=3,
            ),
            Unroll3qOrMore(),
            Collect2qBlocks(),
            ConsolidateBlocks(basis_gates=basis_gates),
            UnitarySynthesis(
                basis_gates,
                approximation_degree=approximation_degree,
                coupling_map=coupling_map,
                backend_props=backend_properties,
                method=unitary_synthesis_method,
                plugin_config=unitary_synthesis_plugin_config,
            ),
        ]
    else:
        raise TranspilerError("Invalid translation method %s." % translation_method)

    # 6. Fix any CX direction mismatch
    _direction_check = [CheckGateDirection(coupling_map, target)]

    def _direction_condition(property_set):
        return not property_set["is_direction_mapped"]

    _direction = [GateDirection(coupling_map, target)]

    # 8. Optimize iteratively until no more change in depth. Removes useless gates
    # after reset and before measure, commutes gates and optimizes contiguous blocks.
    _depth_check = [Depth(), FixedPoint("depth")]

    def _opt_control(property_set):
        return not property_set["depth_fixed_point"]

    _reset = [RemoveResetInZeroState()]

    _meas = [OptimizeSwapBeforeMeasure(), RemoveDiagonalGatesBeforeMeasure()]

    _opt = [
        Collect2qBlocks(),
        ConsolidateBlocks(basis_gates=basis_gates),
        UnitarySynthesis(
            basis_gates,
            approximation_degree=approximation_degree,
            coupling_map=coupling_map,
            backend_props=backend_properties,
            method=unitary_synthesis_method,
            plugin_config=unitary_synthesis_plugin_config,
        ),
        Optimize1qGatesDecomposition(basis_gates),
        CommutativeCancellation(),
    ]

    # 9. Unify all durations (either SI, or convert to dt if known)
    # Schedule the circuit only when scheduling_method is supplied
    _time_unit_setup = [ContainsInstruction("delay")]
    _time_unit_conversion = [TimeUnitConversion(instruction_durations)]

    def _contains_delay(property_set):
        return property_set["contains_delay"]

    _scheduling = []
    if scheduling_method:
        _scheduling += _time_unit_conversion
        if scheduling_method in {"alap", "as_late_as_possible"}:
            _scheduling += [ALAPSchedule(instruction_durations)]
        elif scheduling_method in {"asap", "as_soon_as_possible"}:
            _scheduling += [ASAPSchedule(instruction_durations)]
        else:
            raise TranspilerError("Invalid scheduling method %s." % scheduling_method)

    # 10. Call measure alignment. Should come after scheduling.
    if (
        timing_constraints.granularity != 1
        or timing_constraints.min_length != 1
        or timing_constraints.acquire_alignment != 1
    ):
        _alignments = [
            ValidatePulseGates(
                granularity=timing_constraints.granularity, min_length=timing_constraints.min_length
            ),
            AlignMeasures(alignment=timing_constraints.acquire_alignment),
        ]
    else:
        _alignments = []

    # Build pass manager
    pm3 = PassManager()
    pm3.append(_unroll3q)
    pm3.append(_reset + _meas)
    if coupling_map or initial_layout:
        pm3.append(_given_layout)
        pm3.append(_choose_layout_0, condition=_choose_layout_condition)
        pm3.append(_choose_layout_1, condition=_trivial_not_perfect)
        pm3.append(_choose_layout_2, condition=_csp_not_found_match)
        pm3.append(_embed)
        pm3.append(_swap_check)
        pm3.append(_swap, condition=_swap_condition)
    pm3.append(_unroll)
    if (coupling_map and not coupling_map.is_symmetric) or (
        target is not None and target.get_non_global_operation_names(strict_direction=True)
    ):
        pm3.append(_direction_check)
        pm3.append(_direction, condition=_direction_condition)
        pm3.append(_reset)
        # For transpiling to a target we need to run GateDirection in the
        # optimization loop to correct for incorrect directions that might be
        # inserted by UnitarySynthesis which is direction aware but only via
        # the coupling map which with a target doesn't give a full picture
        if target is not None:
            pm3.append(_depth_check + _opt + _unroll + _direction, do_while=_opt_control)
        else:
            pm3.append(_depth_check + _opt + _unroll, do_while=_opt_control)
    else:
        pm3.append(_reset)
        pm3.append(_depth_check + _opt + _unroll, do_while=_opt_control)
    if inst_map and inst_map.has_custom_gate():
        pm3.append(PulseGates(inst_map=inst_map))
    if scheduling_method:
        pm3.append(_scheduling)
    elif instruction_durations:
        pm3.append(_time_unit_setup)
        pm3.append(_time_unit_conversion, condition=_contains_delay)
    pm3.append(_alignments)

    return pm3
Exemplo n.º 9
0
def level_1_pass_manager(
        pass_manager_config: PassManagerConfig) -> PassManager:
    """Level 1 pass manager: light optimization by simple adjacent gate collapsing.

    This pass manager applies the user-given initial layout. If none is given,
    and a trivial layout (i-th virtual -> i-th physical) makes the circuit fit
    the coupling map, that is used.
    Otherwise, the circuit is mapped to the most densely connected coupling subgraph,
    and swaps are inserted to map. Any unused physical qubit is allocated as ancilla space.
    The pass manager then unrolls the circuit to the desired basis, and transforms the
    circuit to match the coupling map. Finally, optimizations in the form of adjacent
    gate collapse and redundant reset removal are performed.

    Note:
        In simulators where ``coupling_map=None``, only the unrolling and
        optimization stages are done.

    Args:
        pass_manager_config: configuration of the pass manager.

    Returns:
        a level 1 pass manager.

    Raises:
        TranspilerError: if the passmanager config is invalid.
    """
    basis_gates = pass_manager_config.basis_gates
    inst_map = pass_manager_config.inst_map
    coupling_map = pass_manager_config.coupling_map
    initial_layout = pass_manager_config.initial_layout
    layout_method = pass_manager_config.layout_method or "dense"
    routing_method = pass_manager_config.routing_method or "stochastic"
    translation_method = pass_manager_config.translation_method or "translator"
    scheduling_method = pass_manager_config.scheduling_method
    instruction_durations = pass_manager_config.instruction_durations
    seed_transpiler = pass_manager_config.seed_transpiler
    backend_properties = pass_manager_config.backend_properties
    approximation_degree = pass_manager_config.approximation_degree
    unitary_synthesis_method = pass_manager_config.unitary_synthesis_method
    unitary_synthesis_plugin_config = pass_manager_config.unitary_synthesis_plugin_config
    timing_constraints = pass_manager_config.timing_constraints or TimingConstraints(
    )
    target = pass_manager_config.target

    # 1. Use trivial layout if no layout given
    _given_layout = SetLayout(initial_layout)

    _choose_layout_and_score = [
        TrivialLayout(coupling_map),
        Layout2qDistance(coupling_map, property_name="trivial_layout_score"),
    ]

    def _choose_layout_condition(property_set):
        return not property_set["layout"]

    # 2. Decompose so only 1-qubit and 2-qubit gates remain
    _unroll3q = [
        # Use unitary synthesis for basis aware decomposition of UnitaryGates
        UnitarySynthesis(
            basis_gates,
            approximation_degree=approximation_degree,
            method=unitary_synthesis_method,
            min_qubits=3,
            plugin_config=unitary_synthesis_plugin_config,
        ),
        Unroll3qOrMore(),
    ]

    # 3. Use a better layout on densely connected qubits, if circuit needs swaps
    if layout_method == "trivial":
        _improve_layout = TrivialLayout(coupling_map)
    elif layout_method == "dense":
        _improve_layout = DenseLayout(coupling_map, backend_properties)
    elif layout_method == "noise_adaptive":
        _improve_layout = NoiseAdaptiveLayout(backend_properties)
    elif layout_method == "sabre":
        _improve_layout = SabreLayout(coupling_map,
                                      max_iterations=2,
                                      seed=seed_transpiler)
    else:
        raise TranspilerError("Invalid layout method %s." % layout_method)

    def _not_perfect_yet(property_set):
        return (property_set["trivial_layout_score"] is not None
                and property_set["trivial_layout_score"] != 0)

    # 4. Extend dag/layout with ancillas using the full coupling map
    _embed = [
        FullAncillaAllocation(coupling_map),
        EnlargeWithAncilla(),
        ApplyLayout()
    ]

    # 5. Swap to fit the coupling map
    _swap_check = CheckMap(coupling_map)

    def _swap_condition(property_set):
        return not property_set["is_swap_mapped"]

    _swap = [BarrierBeforeFinalMeasurements()]
    if routing_method == "basic":
        _swap += [BasicSwap(coupling_map)]
    elif routing_method == "stochastic":
        _swap += [
            StochasticSwap(coupling_map, trials=20, seed=seed_transpiler)
        ]
    elif routing_method == "lookahead":
        _swap += [LookaheadSwap(coupling_map, search_depth=4, search_width=4)]
    elif routing_method == "sabre":
        _swap += [
            SabreSwap(coupling_map,
                      heuristic="lookahead",
                      seed=seed_transpiler)
        ]
    elif routing_method == "none":
        _swap += [
            Error(
                msg=
                ("No routing method selected, but circuit is not routed to device. "
                 "CheckMap Error: {check_map_msg}"),
                action="raise",
            )
        ]
    else:
        raise TranspilerError("Invalid routing method %s." % routing_method)

    # 6. Unroll to the basis
    if translation_method == "unroller":
        _unroll = [Unroller(basis_gates)]
    elif translation_method == "translator":
        from qiskit.circuit.equivalence_library import SessionEquivalenceLibrary as sel

        _unroll = [
            # Use unitary synthesis for basis aware decomposition of UnitaryGates before
            # custom unrolling
            UnitarySynthesis(
                basis_gates,
                approximation_degree=approximation_degree,
                coupling_map=coupling_map,
                method=unitary_synthesis_method,
                backend_props=backend_properties,
                plugin_config=unitary_synthesis_plugin_config,
            ),
            UnrollCustomDefinitions(sel, basis_gates),
            BasisTranslator(sel, basis_gates, target),
        ]
    elif translation_method == "synthesis":
        _unroll = [
            # Use unitary synthesis for basis aware decomposition of UnitaryGates before
            # collection
            UnitarySynthesis(
                basis_gates,
                approximation_degree=approximation_degree,
                coupling_map=coupling_map,
                method=unitary_synthesis_method,
                backend_props=backend_properties,
                min_qubits=3,
            ),
            Unroll3qOrMore(),
            Collect2qBlocks(),
            ConsolidateBlocks(basis_gates=basis_gates),
            UnitarySynthesis(
                basis_gates,
                approximation_degree=approximation_degree,
                coupling_map=coupling_map,
                method=unitary_synthesis_method,
                backend_props=backend_properties,
                plugin_config=unitary_synthesis_plugin_config,
            ),
        ]
    else:
        raise TranspilerError("Invalid translation method %s." %
                              translation_method)

    # 7. Fix any bad CX directions
    _direction_check = [CheckGateDirection(coupling_map, target)]

    def _direction_condition(property_set):
        return not property_set["is_direction_mapped"]

    _direction = [GateDirection(coupling_map, target)]

    # 8. Remove zero-state reset
    _reset = RemoveResetInZeroState()

    # 9. Merge 1q rotations and cancel CNOT gates iteratively until no more change in depth
    _depth_check = [Depth(), FixedPoint("depth")]

    def _opt_control(property_set):
        return not property_set["depth_fixed_point"]

    _opt = [Optimize1qGatesDecomposition(basis_gates), CXCancellation()]

    # 10. Unify all durations (either SI, or convert to dt if known)
    # Schedule the circuit only when scheduling_method is supplied
    _time_unit_setup = [ContainsInstruction("delay")]
    _time_unit_conversion = [TimeUnitConversion(instruction_durations)]

    def _contains_delay(property_set):
        return property_set["contains_delay"]

    _scheduling = []
    if scheduling_method:
        _scheduling += _time_unit_conversion
        if scheduling_method in {"alap", "as_late_as_possible"}:
            _scheduling += [ALAPSchedule(instruction_durations)]
        elif scheduling_method in {"asap", "as_soon_as_possible"}:
            _scheduling += [ASAPSchedule(instruction_durations)]
        else:
            raise TranspilerError("Invalid scheduling method %s." %
                                  scheduling_method)

    # 11. Call measure alignment. Should come after scheduling.
    if (timing_constraints.granularity != 1
            or timing_constraints.min_length != 1
            or timing_constraints.acquire_alignment != 1):
        _alignments = [
            ValidatePulseGates(granularity=timing_constraints.granularity,
                               min_length=timing_constraints.min_length),
            AlignMeasures(alignment=timing_constraints.acquire_alignment),
        ]
    else:
        _alignments = []

    # Build pass manager
    pm1 = PassManager()
    if coupling_map or initial_layout:
        pm1.append(_given_layout)
        pm1.append(_unroll3q)
        pm1.append(_choose_layout_and_score,
                   condition=_choose_layout_condition)
        pm1.append(_improve_layout, condition=_not_perfect_yet)
        pm1.append(_embed)
        pm1.append(_swap_check)
        pm1.append(_swap, condition=_swap_condition)
    pm1.append(_unroll)
    if (coupling_map and not coupling_map.is_symmetric) or (
            target is not None
            and target.get_non_global_operation_names(strict_direction=True)):
        pm1.append(_direction_check)
        pm1.append(_direction, condition=_direction_condition)
    pm1.append(_reset)
    pm1.append(_depth_check + _opt + _unroll, do_while=_opt_control)
    if inst_map and inst_map.has_custom_gate():
        pm1.append(PulseGates(inst_map=inst_map))
    if scheduling_method:
        pm1.append(_scheduling)
    elif instruction_durations:
        pm1.append(_time_unit_setup)
        pm1.append(_time_unit_conversion, condition=_contains_delay)
    pm1.append(_alignments)

    return pm1
Exemplo n.º 10
0
def level_0_pass_manager(
        pass_manager_config: PassManagerConfig) -> PassManager:
    """Level 0 pass manager: no explicit optimization other than mapping to backend.

    This pass manager applies the user-given initial layout. If none is given, a trivial
    layout consisting of mapping the i-th virtual qubit to the i-th physical qubit is used.
    Any unused physical qubit is allocated as ancilla space.

    The pass manager then unrolls the circuit to the desired basis, and transforms the
    circuit to match the coupling map.

    Note:
        In simulators where ``coupling_map=None``, only the unrolling and
        optimization stages are done.

    Args:
        pass_manager_config: configuration of the pass manager.

    Returns:
        a level 0 pass manager.

    Raises:
        TranspilerError: if the passmanager config is invalid.
    """
    basis_gates = pass_manager_config.basis_gates
    inst_map = pass_manager_config.inst_map
    coupling_map = pass_manager_config.coupling_map
    initial_layout = pass_manager_config.initial_layout
    layout_method = pass_manager_config.layout_method or "trivial"
    routing_method = pass_manager_config.routing_method or "stochastic"
    translation_method = pass_manager_config.translation_method or "translator"
    scheduling_method = pass_manager_config.scheduling_method
    instruction_durations = pass_manager_config.instruction_durations
    seed_transpiler = pass_manager_config.seed_transpiler
    backend_properties = pass_manager_config.backend_properties
    approximation_degree = pass_manager_config.approximation_degree
    timing_constraints = pass_manager_config.timing_constraints or TimingConstraints(
    )
    unitary_synthesis_method = pass_manager_config.unitary_synthesis_method
    unitary_synthesis_plugin_config = pass_manager_config.unitary_synthesis_plugin_config
    target = pass_manager_config.target

    # 1. Decompose so only 1-qubit and 2-qubit gates remain
    _unroll3q = [
        # Use unitary synthesis for basis aware decomposition of UnitaryGates
        UnitarySynthesis(
            basis_gates,
            approximation_degree=approximation_degree,
            method=unitary_synthesis_method,
            min_qubits=3,
            plugin_config=unitary_synthesis_plugin_config,
        ),
        Unroll3qOrMore(),
    ]

    # 2. Choose an initial layout if not set by user (default: trivial layout)
    _given_layout = SetLayout(initial_layout)

    def _choose_layout_condition(property_set):
        return not property_set["layout"]

    if layout_method == "trivial":
        _choose_layout = TrivialLayout(coupling_map)
    elif layout_method == "dense":
        _choose_layout = DenseLayout(coupling_map, backend_properties)
    elif layout_method == "noise_adaptive":
        _choose_layout = NoiseAdaptiveLayout(backend_properties)
    elif layout_method == "sabre":
        _choose_layout = SabreLayout(coupling_map,
                                     max_iterations=1,
                                     seed=seed_transpiler)
    else:
        raise TranspilerError("Invalid layout method %s." % layout_method)

    # 3. Extend dag/layout with ancillas using the full coupling map
    _embed = [
        FullAncillaAllocation(coupling_map),
        EnlargeWithAncilla(),
        ApplyLayout()
    ]

    # 4. Swap to fit the coupling map
    _swap_check = CheckMap(coupling_map)

    def _swap_condition(property_set):
        return not property_set["is_swap_mapped"]

    _swap = [BarrierBeforeFinalMeasurements()]
    if routing_method == "basic":
        _swap += [BasicSwap(coupling_map)]
    elif routing_method == "stochastic":
        _swap += [
            StochasticSwap(coupling_map, trials=20, seed=seed_transpiler)
        ]
    elif routing_method == "lookahead":
        _swap += [LookaheadSwap(coupling_map, search_depth=2, search_width=2)]
    elif routing_method == "sabre":
        _swap += [
            SabreSwap(coupling_map, heuristic="basic", seed=seed_transpiler)
        ]
    elif routing_method == "none":
        _swap += [
            Error(
                msg=
                ("No routing method selected, but circuit is not routed to device. "
                 "CheckMap Error: {check_map_msg}"),
                action="raise",
            )
        ]
    else:
        raise TranspilerError("Invalid routing method %s." % routing_method)

    # 5. Unroll to the basis
    if translation_method == "unroller":
        _unroll = [Unroller(basis_gates)]
    elif translation_method == "translator":
        from qiskit.circuit.equivalence_library import SessionEquivalenceLibrary as sel

        _unroll = [
            UnitarySynthesis(
                basis_gates,
                approximation_degree=approximation_degree,
                coupling_map=coupling_map,
                backend_props=backend_properties,
                method=unitary_synthesis_method,
                plugin_config=unitary_synthesis_plugin_config,
            ),
            UnrollCustomDefinitions(sel, basis_gates),
            BasisTranslator(sel, basis_gates, target),
        ]
    elif translation_method == "synthesis":
        _unroll = [
            UnitarySynthesis(
                basis_gates,
                approximation_degree=approximation_degree,
                coupling_map=coupling_map,
                backend_props=backend_properties,
                method=unitary_synthesis_method,
                min_qubits=3,
                plugin_config=unitary_synthesis_plugin_config,
            ),
            Unroll3qOrMore(),
            Collect2qBlocks(),
            Collect1qRuns(),
            ConsolidateBlocks(basis_gates=basis_gates),
            UnitarySynthesis(
                basis_gates,
                approximation_degree=approximation_degree,
                coupling_map=coupling_map,
                backend_props=backend_properties,
                method=unitary_synthesis_method,
                plugin_config=unitary_synthesis_plugin_config,
            ),
        ]
    else:
        raise TranspilerError("Invalid translation method %s." %
                              translation_method)

    # 6. Fix any bad CX directions
    _direction_check = [CheckGateDirection(coupling_map, target)]

    def _direction_condition(property_set):
        return not property_set["is_direction_mapped"]

    _direction = [GateDirection(coupling_map, target)]

    # 7. Unify all durations (either SI, or convert to dt if known)
    # Schedule the circuit only when scheduling_method is supplied
    _time_unit_setup = [ContainsInstruction("delay")]
    _time_unit_conversion = [TimeUnitConversion(instruction_durations)]

    def _contains_delay(property_set):
        return property_set["contains_delay"]

    _scheduling = []
    if scheduling_method:
        _scheduling += _time_unit_conversion
        if scheduling_method in {"alap", "as_late_as_possible"}:
            _scheduling += [ALAPSchedule(instruction_durations)]
        elif scheduling_method in {"asap", "as_soon_as_possible"}:
            _scheduling += [ASAPSchedule(instruction_durations)]
        else:
            raise TranspilerError("Invalid scheduling method %s." %
                                  scheduling_method)

    # 8. Call measure alignment. Should come after scheduling.
    if (timing_constraints.granularity != 1
            or timing_constraints.min_length != 1
            or timing_constraints.acquire_alignment != 1):
        _alignments = [
            ValidatePulseGates(granularity=timing_constraints.granularity,
                               min_length=timing_constraints.min_length),
            AlignMeasures(alignment=timing_constraints.acquire_alignment),
        ]
    else:
        _alignments = []

    # Build pass manager
    pm0 = PassManager()
    if coupling_map or initial_layout:
        pm0.append(_given_layout)
        pm0.append(_unroll3q)
        pm0.append(_choose_layout, condition=_choose_layout_condition)
        pm0.append(_embed)
        pm0.append(_swap_check)
        pm0.append(_swap, condition=_swap_condition)
    pm0.append(_unroll)
    if (coupling_map and not coupling_map.is_symmetric) or (
            target is not None
            and target.get_non_global_operation_names(strict_direction=True)):
        pm0.append(_direction_check)
        pm0.append(_direction, condition=_direction_condition)
        pm0.append(_unroll)
    if inst_map and inst_map.has_custom_gate():
        pm0.append(PulseGates(inst_map=inst_map))
    if scheduling_method:
        pm0.append(_scheduling)
    elif instruction_durations:
        pm0.append(_time_unit_setup)
        pm0.append(_time_unit_conversion, condition=_contains_delay)
    pm0.append(_alignments)
    return pm0
Exemplo n.º 11
0
def level_2_pass_manager(pass_manager_config: PassManagerConfig) -> PassManager:
    """Level 2 pass manager: medium optimization by initial layout selection and
    gate cancellation using commutativity rules.

    This pass manager applies the user-given initial layout. If none is given, a search
    for a perfect layout (i.e. one that satisfies all 2-qubit interactions) is conducted.
    If no such layout is found, qubits are laid out on the most densely connected subset
    which also exhibits the best gate fidelities.

    The pass manager then transforms the circuit to match the coupling constraints.
    It is then unrolled to the basis, and any flipped cx directions are fixed.
    Finally, optimizations in the form of commutative gate cancellation and redundant
    reset removal are performed.

    Note:
        In simulators where ``coupling_map=None``, only the unrolling and
        optimization stages are done.

    Args:
        pass_manager_config: configuration of the pass manager.

    Returns:
        a level 2 pass manager.

    Raises:
        TranspilerError: if the passmanager config is invalid.
    """
    basis_gates = pass_manager_config.basis_gates
    coupling_map = pass_manager_config.coupling_map
    initial_layout = pass_manager_config.initial_layout
    layout_method = pass_manager_config.layout_method or "dense"
    routing_method = pass_manager_config.routing_method or "stochastic"
    translation_method = pass_manager_config.translation_method or "translator"
    scheduling_method = pass_manager_config.scheduling_method
    instruction_durations = pass_manager_config.instruction_durations
    seed_transpiler = pass_manager_config.seed_transpiler
    backend_properties = pass_manager_config.backend_properties
    approximation_degree = pass_manager_config.approximation_degree
    timing_constraints = pass_manager_config.timing_constraints or TimingConstraints()

    # 1. Search for a perfect layout, or choose a dense layout, if no layout given
    _given_layout = SetLayout(initial_layout)

    def _choose_layout_condition(property_set):
        # layout hasn't been set yet
        return not property_set["layout"]

    # 1a. If layout_method is not set, first try a trivial layout
    _choose_layout_0 = (
        []
        if pass_manager_config.layout_method
        else [
            TrivialLayout(coupling_map),
            Layout2qDistance(coupling_map, property_name="trivial_layout_score"),
        ]
    )
    # 1b. If a trivial layout wasn't perfect (ie no swaps are needed) then try using
    # CSP layout to find a perfect layout
    _choose_layout_1 = (
        []
        if pass_manager_config.layout_method
        else CSPLayout(coupling_map, call_limit=1000, time_limit=10, seed=seed_transpiler)
    )

    def _trivial_not_perfect(property_set):
        # Verify that a trivial layout  is perfect. If trivial_layout_score > 0
        # the layout is not perfect. The layout is unconditionally set by trivial
        # layout so we need to clear it before contuing.
        if property_set["trivial_layout_score"] is not None:
            if property_set["trivial_layout_score"] != 0:
                property_set["layout"]._wrapped = None
                return True
        return False

    def _csp_not_found_match(property_set):
        # If a layout hasn't been set by the time we run csp we need to run layout
        if property_set["layout"] is None:
            return True
        # if CSP layout stopped for any reason other than solution found we need
        # to run layout since CSP didn't converge.
        if (
            property_set["CSPLayout_stop_reason"] is not None
            and property_set["CSPLayout_stop_reason"] != "solution found"
        ):
            return True
        return False

    # 1c. if CSP layout doesn't converge on a solution use layout_method (dense) to get a layout
    if layout_method == "trivial":
        _choose_layout_2 = TrivialLayout(coupling_map)
    elif layout_method == "dense":
        _choose_layout_2 = DenseLayout(coupling_map, backend_properties)
    elif layout_method == "noise_adaptive":
        _choose_layout_2 = NoiseAdaptiveLayout(backend_properties)
    elif layout_method == "sabre":
        _choose_layout_2 = SabreLayout(coupling_map, max_iterations=2, seed=seed_transpiler)
    else:
        raise TranspilerError("Invalid layout method %s." % layout_method)

    # 2. Extend dag/layout with ancillas using the full coupling map
    _embed = [FullAncillaAllocation(coupling_map), EnlargeWithAncilla(), ApplyLayout()]

    # 3. Unroll to 1q or 2q gates
    _unroll3q = Unroll3qOrMore()

    # 4. Swap to fit the coupling map
    _swap_check = CheckMap(coupling_map)

    def _swap_condition(property_set):
        return not property_set["is_swap_mapped"]

    _swap = [BarrierBeforeFinalMeasurements()]
    if routing_method == "basic":
        _swap += [BasicSwap(coupling_map)]
    elif routing_method == "stochastic":
        _swap += [StochasticSwap(coupling_map, trials=20, seed=seed_transpiler)]
    elif routing_method == "lookahead":
        _swap += [LookaheadSwap(coupling_map, search_depth=5, search_width=5)]
    elif routing_method == "sabre":
        _swap += [SabreSwap(coupling_map, heuristic="decay", seed=seed_transpiler)]
    elif routing_method == "none":
        _swap += [
            Error(
                msg="No routing method selected, but circuit is not routed to device. "
                "CheckMap Error: {check_map_msg}",
                action="raise",
            )
        ]
    else:
        raise TranspilerError("Invalid routing method %s." % routing_method)

    # 5. Unroll to the basis
    if translation_method == "unroller":
        _unroll = [Unroller(basis_gates)]
    elif translation_method == "translator":
        from qiskit.circuit.equivalence_library import SessionEquivalenceLibrary as sel

        _unroll = [UnrollCustomDefinitions(sel, basis_gates), BasisTranslator(sel, basis_gates)]
    elif translation_method == "synthesis":
        _unroll = [
            Unroll3qOrMore(),
            Collect2qBlocks(),
            ConsolidateBlocks(basis_gates=basis_gates),
            UnitarySynthesis(basis_gates, approximation_degree=approximation_degree),
        ]
    else:
        raise TranspilerError("Invalid translation method %s." % translation_method)

    # 6. Fix any bad CX directions
    _direction_check = [CheckGateDirection(coupling_map)]

    def _direction_condition(property_set):
        return not property_set["is_direction_mapped"]

    _direction = [GateDirection(coupling_map)]

    # 7. Remove zero-state reset
    _reset = RemoveResetInZeroState()

    # 8. 1q rotation merge and commutative cancellation iteratively until no more change in depth
    _depth_check = [Depth(), FixedPoint("depth")]

    def _opt_control(property_set):
        return not property_set["depth_fixed_point"]

    _opt = [
        Optimize1qGatesDecomposition(basis_gates),
        CommutativeCancellation(basis_gates=basis_gates),
    ]

    # 9. Unify all durations (either SI, or convert to dt if known)
    # Schedule the circuit only when scheduling_method is supplied
    _scheduling = [TimeUnitConversion(instruction_durations)]
    if scheduling_method:
        if scheduling_method in {"alap", "as_late_as_possible"}:
            _scheduling += [ALAPSchedule(instruction_durations)]
        elif scheduling_method in {"asap", "as_soon_as_possible"}:
            _scheduling += [ASAPSchedule(instruction_durations)]
        else:
            raise TranspilerError("Invalid scheduling method %s." % scheduling_method)

    # 10. Call measure alignment. Should come after scheduling.
    _alignments = [
        ValidatePulseGates(
            granularity=timing_constraints.granularity, min_length=timing_constraints.min_length
        ),
        AlignMeasures(alignment=timing_constraints.acquire_alignment),
    ]

    # Build pass manager
    pm2 = PassManager()
    if coupling_map or initial_layout:
        pm2.append(_given_layout)
        pm2.append(_choose_layout_0, condition=_choose_layout_condition)
        pm2.append(_choose_layout_1, condition=_trivial_not_perfect)
        pm2.append(_choose_layout_2, condition=_csp_not_found_match)
        pm2.append(_embed)
        pm2.append(_unroll3q)
        pm2.append(_swap_check)
        pm2.append(_swap, condition=_swap_condition)
    pm2.append(_unroll)
    if coupling_map and not coupling_map.is_symmetric:
        pm2.append(_direction_check)
        pm2.append(_direction, condition=_direction_condition)
    pm2.append(_reset)
    pm2.append(_depth_check + _opt + _unroll, do_while=_opt_control)
    pm2.append(_scheduling)
    pm2.append(_alignments)
    return pm2
Exemplo n.º 12
0
def level_2_pass_manager(
        pass_manager_config: PassManagerConfig) -> PassManager:
    """Level 2 pass manager: medium optimization by initial layout selection and
    gate cancellation using commutativity rules.

    This pass manager applies the user-given initial layout. If none is given, a search
    for a perfect layout (i.e. one that satisfies all 2-qubit interactions) is conducted.
    If no such layout is found, qubits are laid out on the most densely connected subset
    which also exhibits the best gate fidelities.

    The pass manager then transforms the circuit to match the coupling constraints.
    It is then unrolled to the basis, and any flipped cx directions are fixed.
    Finally, optimizations in the form of commutative gate cancellation and redundant
    reset removal are performed.

    Note:
        In simulators where ``coupling_map=None``, only the unrolling and
        optimization stages are done.

    Args:
        pass_manager_config: configuration of the pass manager.

    Returns:
        a level 2 pass manager.

    Raises:
        TranspilerError: if the passmanager config is invalid.
    """
    basis_gates = pass_manager_config.basis_gates
    inst_map = pass_manager_config.inst_map
    coupling_map = pass_manager_config.coupling_map
    initial_layout = pass_manager_config.initial_layout
    layout_method = pass_manager_config.layout_method or "dense"
    routing_method = pass_manager_config.routing_method or "stochastic"
    translation_method = pass_manager_config.translation_method or "translator"
    scheduling_method = pass_manager_config.scheduling_method
    instruction_durations = pass_manager_config.instruction_durations
    seed_transpiler = pass_manager_config.seed_transpiler
    backend_properties = pass_manager_config.backend_properties
    approximation_degree = pass_manager_config.approximation_degree
    unitary_synthesis_method = pass_manager_config.unitary_synthesis_method
    timing_constraints = pass_manager_config.timing_constraints or TimingConstraints(
    )
    unitary_synthesis_plugin_config = pass_manager_config.unitary_synthesis_plugin_config
    target = pass_manager_config.target

    # 1. Unroll to 1q or 2q gates
    _unroll3q = [
        # Use unitary synthesis for basis aware decomposition of UnitaryGates
        UnitarySynthesis(
            basis_gates,
            approximation_degree=approximation_degree,
            method=unitary_synthesis_method,
            min_qubits=3,
            plugin_config=unitary_synthesis_plugin_config,
        ),
        Unroll3qOrMore(),
    ]

    # 2. Search for a perfect layout, or choose a dense layout, if no layout given
    _given_layout = SetLayout(initial_layout)

    def _choose_layout_condition(property_set):
        # layout hasn't been set yet
        return not property_set["layout"]

    def _vf2_match_not_found(property_set):
        # If a layout hasn't been set by the time we run vf2 layout we need to
        # run layout
        if property_set["layout"] is None:
            return True
        # if VF2 layout stopped for any reason other than solution found we need
        # to run layout since VF2 didn't converge.
        if (property_set["VF2Layout_stop_reason"] is not None
                and property_set["VF2Layout_stop_reason"]
                is not VF2LayoutStopReason.SOLUTION_FOUND):
            return True
        return False

    # 2a. Try using VF2 layout to find a perfect layout
    _choose_layout_0 = ([] if pass_manager_config.layout_method else VF2Layout(
        coupling_map,
        seed=seed_transpiler,
        call_limit=int(5e6),  # Set call limit to ~10 sec with retworkx 0.10.2
        time_limit=10.0,
        properties=backend_properties,
    ))

    # 2b. if VF2 layout doesn't converge on a solution use layout_method (dense) to get a layout
    if layout_method == "trivial":
        _choose_layout_1 = TrivialLayout(coupling_map)
    elif layout_method == "dense":
        _choose_layout_1 = DenseLayout(coupling_map, backend_properties)
    elif layout_method == "noise_adaptive":
        _choose_layout_1 = NoiseAdaptiveLayout(backend_properties)
    elif layout_method == "sabre":
        _choose_layout_1 = SabreLayout(coupling_map,
                                       max_iterations=2,
                                       seed=seed_transpiler)
    else:
        raise TranspilerError("Invalid layout method %s." % layout_method)

    # 3. Extend dag/layout with ancillas using the full coupling map
    _embed = [
        FullAncillaAllocation(coupling_map),
        EnlargeWithAncilla(),
        ApplyLayout()
    ]

    # 4. Swap to fit the coupling map
    _swap_check = CheckMap(coupling_map)

    def _swap_condition(property_set):
        return not property_set["is_swap_mapped"]

    _swap = [BarrierBeforeFinalMeasurements()]
    if routing_method == "basic":
        _swap += [BasicSwap(coupling_map)]
    elif routing_method == "stochastic":
        _swap += [
            StochasticSwap(coupling_map, trials=20, seed=seed_transpiler)
        ]
    elif routing_method == "lookahead":
        _swap += [LookaheadSwap(coupling_map, search_depth=5, search_width=5)]
    elif routing_method == "sabre":
        _swap += [
            SabreSwap(coupling_map, heuristic="decay", seed=seed_transpiler)
        ]
    elif routing_method == "none":
        _swap += [
            Error(
                msg=
                ("No routing method selected, but circuit is not routed to device. "
                 "CheckMap Error: {check_map_msg}"),
                action="raise",
            )
        ]
    else:
        raise TranspilerError("Invalid routing method %s." % routing_method)

    # 5. Unroll to the basis
    if translation_method == "unroller":
        _unroll = [Unroller(basis_gates)]
    elif translation_method == "translator":
        from qiskit.circuit.equivalence_library import SessionEquivalenceLibrary as sel

        _unroll = [
            # Use unitary synthesis for basis aware decomposition of UnitaryGates before
            # custom unrolling
            UnitarySynthesis(
                basis_gates,
                approximation_degree=approximation_degree,
                coupling_map=coupling_map,
                backend_props=backend_properties,
                method=unitary_synthesis_method,
                plugin_config=unitary_synthesis_plugin_config,
            ),
            UnrollCustomDefinitions(sel, basis_gates),
            BasisTranslator(sel, basis_gates, target),
        ]
    elif translation_method == "synthesis":
        _unroll = [
            # Use unitary synthesis for basis aware decomposition of UnitaryGates before
            # collection
            UnitarySynthesis(
                basis_gates,
                approximation_degree=approximation_degree,
                coupling_map=coupling_map,
                backend_props=backend_properties,
                method=unitary_synthesis_method,
                plugin_config=unitary_synthesis_plugin_config,
                min_qubits=3,
            ),
            Unroll3qOrMore(),
            Collect2qBlocks(),
            ConsolidateBlocks(basis_gates=basis_gates, target=target),
            UnitarySynthesis(
                basis_gates,
                approximation_degree=approximation_degree,
                coupling_map=coupling_map,
                backend_props=backend_properties,
                method=unitary_synthesis_method,
                plugin_config=unitary_synthesis_plugin_config,
            ),
        ]
    else:
        raise TranspilerError("Invalid translation method %s." %
                              translation_method)

    # 6. Fix any bad CX directions
    _direction_check = [CheckGateDirection(coupling_map, target)]

    def _direction_condition(property_set):
        return not property_set["is_direction_mapped"]

    _direction = [GateDirection(coupling_map, target)]

    # 7. Remove zero-state reset
    _reset = RemoveResetInZeroState()

    # 8. 1q rotation merge and commutative cancellation iteratively until no more change in depth
    _depth_check = [Depth(), FixedPoint("depth")]

    def _opt_control(property_set):
        return not property_set["depth_fixed_point"]

    _opt = [
        Optimize1qGatesDecomposition(basis_gates),
        CommutativeCancellation(basis_gates=basis_gates),
    ]

    # 9. Unify all durations (either SI, or convert to dt if known)
    # Schedule the circuit only when scheduling_method is supplied
    _time_unit_setup = [ContainsInstruction("delay")]
    _time_unit_conversion = [TimeUnitConversion(instruction_durations)]

    def _contains_delay(property_set):
        return property_set["contains_delay"]

    _scheduling = []
    if scheduling_method:
        _scheduling += _time_unit_conversion
        if scheduling_method in {"alap", "as_late_as_possible"}:
            _scheduling += [ALAPSchedule(instruction_durations), PadDelay()]
        elif scheduling_method in {"asap", "as_soon_as_possible"}:
            _scheduling += [ASAPSchedule(instruction_durations), PadDelay()]
        else:
            raise TranspilerError("Invalid scheduling method %s." %
                                  scheduling_method)

    # 10. Call measure alignment. Should come after scheduling.
    if (timing_constraints.granularity != 1
            or timing_constraints.min_length != 1
            or timing_constraints.acquire_alignment != 1):
        _alignments = [
            ValidatePulseGates(granularity=timing_constraints.granularity,
                               min_length=timing_constraints.min_length),
            AlignMeasures(alignment=timing_constraints.acquire_alignment),
        ]
    else:
        _alignments = []

    # Build pass manager
    pm2 = PassManager()
    if coupling_map or initial_layout:
        pm2.append(_given_layout)
        pm2.append(_unroll3q)
        pm2.append(_choose_layout_0, condition=_choose_layout_condition)
        pm2.append(_choose_layout_1, condition=_vf2_match_not_found)
        pm2.append(_embed)
        pm2.append(_swap_check)
        pm2.append(_swap, condition=_swap_condition)
    pm2.append(_unroll)
    if (coupling_map and not coupling_map.is_symmetric) or (
            target is not None
            and target.get_non_global_operation_names(strict_direction=True)):
        pm2.append(_direction_check)
        pm2.append(_direction, condition=_direction_condition)
    pm2.append(_reset)
    pm2.append(_depth_check + _opt + _unroll, do_while=_opt_control)
    if inst_map and inst_map.has_custom_gate():
        pm2.append(PulseGates(inst_map=inst_map))
    if scheduling_method:
        pm2.append(_scheduling)
    elif instruction_durations:
        pm2.append(_time_unit_setup)
        pm2.append(_time_unit_conversion, condition=_contains_delay)
    pm2.append(_alignments)
    return pm2
Exemplo n.º 13
0
    def test_circuit_using_clbit(self):
        """Test a circuit with instructions using a common clbit.

        (input)
             ┌───┐┌────────────────┐┌─┐
        q_0: ┤ X ├┤ Delay(100[dt]) ├┤M├──────────────
             └───┘└────────────────┘└╥┘   ┌───┐
        q_1: ────────────────────────╫────┤ X ├──────
                                     ║    └─╥─┘   ┌─┐
        q_2: ────────────────────────╫──────╫─────┤M├
                                     ║ ┌────╨────┐└╥┘
        c: 1/════════════════════════╩═╡ c_0 = T ╞═╩═
                                     0 └─────────┘ 0

        (aligned)
                    ┌───┐       ┌────────────────┐┌─┐┌────────────────┐
        q_0: ───────┤ X ├───────┤ Delay(112[dt]) ├┤M├┤ Delay(160[dt]) ├───
             ┌──────┴───┴──────┐└────────────────┘└╥┘└─────┬───┬──────┘
        q_1: ┤ Delay(1872[dt]) ├───────────────────╫───────┤ X ├──────────
             └┬────────────────┤                   ║       └─╥─┘       ┌─┐
        q_2: ─┤ Delay(432[dt]) ├───────────────────╫─────────╫─────────┤M├
              └────────────────┘                   ║    ┌────╨────┐    └╥┘
        c: 1/══════════════════════════════════════╩════╡ c_0 = T ╞═════╩═
                                                   0    └─────────┘     0

        Looking at the q_0, the total schedule length T becomes
        160 (x) + 112 (aligned delay) + 1600 (measure) + 160 (delay) = 2032.
        The last delay comes from ALAP scheduling called before the AlignMeasure pass,
        which aligns stop times as late as possible, so the start time of x(1).c_if(0)
        and the stop time of measure(0, 0) become T - 160.
        """
        circuit = QuantumCircuit(3, 1)
        circuit.x(0)
        circuit.delay(100, 0, unit="dt")
        circuit.measure(0, 0)
        circuit.x(1).c_if(0, 1)
        circuit.measure(2, 0)

        pm = PassManager([
            # reproduce old behavior of 0.20.0 before #7655
            # currently default write latency is 0
            ALAPSchedule(
                durations=self.instruction_durations,
                clbit_write_latency=1600,
                conditional_latency=0,
            ),
            PadDelay(),
            AlignMeasures(alignment=16),
        ])

        aligned_circuit = pm.run(circuit)

        self.assertEqual(aligned_circuit.duration, 2032)

        ref_circuit = QuantumCircuit(3, 1)
        ref_circuit.x(0)
        ref_circuit.delay(112, 0, unit="dt")
        ref_circuit.delay(1872, 1, unit="dt")  # 2032 - 160
        ref_circuit.delay(432, 2, unit="dt")  # 2032 - 1600
        ref_circuit.measure(0, 0)
        ref_circuit.x(1).c_if(0, 1)
        ref_circuit.delay(160, 0, unit="dt")
        ref_circuit.measure(2, 0)

        self.assertEqual(aligned_circuit, ref_circuit)
Exemplo n.º 14
0
    def test_mid_circuit_multiq_gates(self):
        """Test circuit with mid circuit measurement and multi qubit gates.

        (input)

             ┌───┐┌────────────────┐┌─┐             ┌─┐
        q_0: ┤ X ├┤ Delay(100[dt]) ├┤M├──■───────■──┤M├
             └───┘└────────────────┘└╥┘┌─┴─┐┌─┐┌─┴─┐└╥┘
        q_1: ────────────────────────╫─┤ X ├┤M├┤ X ├─╫─
                                     ║ └───┘└╥┘└───┘ ║
        c: 2/════════════════════════╩═══════╩═══════╩═
                                     0       1       0

        (output)

                    ┌───┐       ┌────────────────┐┌─┐     ┌─────────────────┐     ┌─┐»
        q_0: ───────┤ X ├───────┤ Delay(112[dt]) ├┤M├──■──┤ Delay(1600[dt]) ├──■──┤M├»
             ┌──────┴───┴──────┐└────────────────┘└╥┘┌─┴─┐└───────┬─┬───────┘┌─┴─┐└╥┘»
        q_1: ┤ Delay(1872[dt]) ├───────────────────╫─┤ X ├────────┤M├────────┤ X ├─╫─»
             └─────────────────┘                   ║ └───┘        └╥┘        └───┘ ║ »
        c: 2/══════════════════════════════════════╩═══════════════╩═══════════════╩═»
                                                   0               1               0 »
        «
        «q_0: ───────────────────
        «     ┌─────────────────┐
        «q_1: ┤ Delay(1600[dt]) ├
        «     └─────────────────┘
        «c: 2/═══════════════════
        «

        Delay for the other channel paired by multi-qubit instruction is also scheduled.
        Delay (1872dt) = X (160dt) + Delay (100dt + extra 12dt) + Measure (1600dt).
        """
        circuit = QuantumCircuit(2, 2)
        circuit.x(0)
        circuit.delay(100, 0, unit="dt")
        circuit.measure(0, 0)
        circuit.cx(0, 1)
        circuit.measure(1, 1)
        circuit.cx(0, 1)
        circuit.measure(0, 0)

        pm = PassManager([
            # reproduce old behavior of 0.20.0 before #7655
            # currently default write latency is 0
            ALAPSchedule(
                durations=self.instruction_durations,
                clbit_write_latency=1600,
                conditional_latency=0,
            ),
            PadDelay(),
            AlignMeasures(alignment=16),
        ])

        aligned_circuit = pm.run(circuit)

        ref_circuit = QuantumCircuit(2, 2)
        ref_circuit.x(0)
        ref_circuit.delay(112, 0, unit="dt")
        ref_circuit.measure(0, 0)
        ref_circuit.delay(160 + 112 + 1600, 1, unit="dt")
        ref_circuit.cx(0, 1)
        ref_circuit.delay(1600, 0, unit="dt")
        ref_circuit.measure(1, 1)
        ref_circuit.cx(0, 1)
        ref_circuit.delay(1600, 1, unit="dt")
        ref_circuit.measure(0, 0)

        self.assertEqual(aligned_circuit, ref_circuit)