Exemplo n.º 1
0
    def test_swaps_in_dummy_steps(self):
        """Test the case when swaps are inserted in dummy steps."""
        circuit = QuantumCircuit(4)
        circuit.cx(0, 1)
        circuit.cx(2, 3)
        circuit.h([0, 1, 2, 3])
        circuit.barrier()
        circuit.cx(0, 3)
        circuit.cx(1, 2)
        circuit.barrier()
        circuit.cx(0, 2)
        circuit.cx(1, 3)

        coupling = CouplingMap.from_line(4)
        property_set = {}
        actual = BIPMapping(coupling, objective="depth")(circuit, property_set)
        self.assertEqual(7, actual.depth())

        CheckMap(coupling)(actual, property_set)
        self.assertTrue(property_set["is_swap_mapped"])

        # no swaps before the first barrier
        for inst, _, _ in actual.data:
            if isinstance(inst, Barrier):
                break
            self.assertFalse(isinstance(inst, SwapGate))
Exemplo n.º 2
0
def default_pass_manager(transpile_config):
    """
    The default pass manager that maps to the coupling map.

    Args:
        transpile_config (TranspileConfig)

    Returns:
        PassManager: A pass manager to map and optimize.
    """
    basis_gates = transpile_config.basis_gates
    coupling_map = transpile_config.coupling_map
    initial_layout = transpile_config.initial_layout
    seed_transpiler = transpile_config.seed_transpiler
    pass_manager = PassManager()
    pass_manager.append(SetLayout(initial_layout))
    pass_manager.append(Unroller(basis_gates))

    # Use the trivial layout if no layout is found
    pass_manager.append(
        TrivialLayout(coupling_map),
        condition=lambda property_set: not property_set['layout'])

    # if the circuit and layout already satisfy the coupling_constraints, use that layout
    # otherwise layout on the most densely connected physical qubit subset
    pass_manager.append(CheckMap(coupling_map))
    pass_manager.append(
        DenseLayout(coupling_map),
        condition=lambda property_set: not property_set['is_swap_mapped'])

    # Extend the the dag/layout with ancillas using the full coupling map
    pass_manager.append(FullAncillaAllocation(coupling_map))
    pass_manager.append(EnlargeWithAncilla())

    # Circuit must only contain 1- or 2-qubit interactions for swapper to work
    pass_manager.append(Unroll3qOrMore())

    # Swap mapper
    pass_manager.append(BarrierBeforeFinalMeasurements())
    pass_manager.append(
        LegacySwap(coupling_map, trials=20, seed=seed_transpiler))

    # Expand swaps
    pass_manager.append(Decompose(SwapGate))

    # Change CX directions
    pass_manager.append(CXDirection(coupling_map))

    # Simplify single qubit gates and CXs
    simplification_passes = [
        Optimize1qGates(),
        CXCancellation(),
        RemoveResetInZeroState()
    ]

    pass_manager.append(
        simplification_passes + [Depth(), FixedPoint('depth')],
        do_while=lambda property_set: not property_set['depth_fixed_point'])

    return pass_manager
Exemplo n.º 3
0
    def test_trivial_nop_map(self):
        """ Trivial map in a circuit without entanglement
         qr0:---[H]---

         qr1:---[H]---

         qr2:---[H]---

         CouplingMap map: None
        """
        qr = QuantumRegister(3, 'qr')
        circuit = QuantumCircuit(qr)
        circuit.h(qr)
        coupling = CouplingMap()
        dag = circuit_to_dag(circuit)
        pass_ = CheckMap(coupling)
        pass_.run(dag)
        self.assertTrue(pass_.property_set['is_swap_mapped'])
Exemplo n.º 4
0
    def test_swap_mapped_false(self):
        """ Needs [0]-[1] in a [0]--[2]--[1]
         qr0:--(+)--
                |
         qr1:---.---

         CouplingMap map: [0]--[2]--[1]
        """
        qr = QuantumRegister(2, 'qr')
        circuit = QuantumCircuit(qr)
        circuit.cx(qr[0], qr[1])
        coupling = CouplingMap([[0, 2], [2, 1]])
        dag = circuit_to_dag(circuit)

        pass_ = CheckMap(coupling)
        pass_.run(dag)

        self.assertFalse(pass_.property_set['is_swap_mapped'])
Exemplo n.º 5
0
    def test_false_map(self):
        """ Needs [0]-[1] in a [0]--[2]--[1]
         qr0:--(+)--
                |
         qr1:---.---

         Coupling map: [0]--[2]--[1]
        """
        qr = QuantumRegister(2, 'qr')
        circuit = QuantumCircuit(qr)
        circuit.cx(qr[0], qr[1])
        coupling = Coupling(couplingdict={0: [2], 2: [1]})
        dag = DAGCircuit.fromQuantumCircuit(circuit)

        pass_ = CheckMap(coupling)
        pass_.run(dag)

        self.assertFalse(pass_.property_set['is_mapped'])
Exemplo n.º 6
0
    def test_false_map(self):
        """ Needs [0]-[1] in a [0]--[2]--[1]
         qr0:--X--
               |
         qr1:--X--

         CouplingMap map: [0]->[2]->[1]
        """
        qr = QuantumRegister(2, 'qr')
        circuit = QuantumCircuit(qr)
        circuit.swap(qr[0], qr[1])
        coupling = CouplingMap([(0, 2), (2, 1)])
        dag = circuit_to_dag(circuit)

        pass_ = CheckMap(coupling)
        pass_.run(dag)

        self.assertFalse(pass_.property_set['is_swap_mapped'])
        self.assertFalse(pass_.property_set['is_direction_mapped'])
Exemplo n.º 7
0
    def test_true_map_symmetric(self):
        """ Mapped and directed, because coupling map fully connected

         qr0:--X-[H]-
               |
         qr1:--X-----

         CouplingMap map: [0]<->[1]
        """
        qr = QuantumRegister(2, 'qr')
        circuit = QuantumCircuit(qr)
        circuit.swap(qr[0], qr[1])
        circuit.h(qr[0])
        coupling = CouplingMap([(0, 1), (1, 0)])
        dag = circuit_to_dag(circuit)

        pass_ = CheckMap(coupling)
        pass_.run(dag)

        self.assertTrue(pass_.property_set['is_swap_mapped'])
        self.assertTrue(pass_.property_set['is_direction_mapped'])
Exemplo n.º 8
0
    def test_true_map(self):
        """ Mapped is easy to check
         qr0:--(+)-[H]-(+)-
                |       |
         qr1:---.-------|--
                        |
         qr2:-----------.--

         Coupling map: [1]--[0]--[2]
        """
        qr = QuantumRegister(3, 'qr')
        circuit = QuantumCircuit(qr)
        circuit.cx(qr[0], qr[1])
        circuit.h(qr[0])
        circuit.cx(qr[0], qr[2])
        coupling = Coupling(couplingdict={0: [1, 2]})
        dag = DAGCircuit.fromQuantumCircuit(circuit)

        pass_ = CheckMap(coupling)
        pass_.run(dag)

        self.assertTrue(pass_.property_set['is_mapped'])
Exemplo n.º 9
0
    def test_swap_mapped_true(self):
        """ Mapped is easy to check
         qr0:--(+)-[H]-(+)-
                |       |
         qr1:---.-------|--
                        |
         qr2:-----------.--

         CouplingMap map: [1]--[0]--[2]
        """
        qr = QuantumRegister(3, 'qr')
        circuit = QuantumCircuit(qr)
        circuit.cx(qr[0], qr[1])
        circuit.h(qr[0])
        circuit.cx(qr[0], qr[2])
        coupling = CouplingMap([[0, 1], [0, 2]])
        dag = circuit_to_dag(circuit)

        pass_ = CheckMap(coupling)
        pass_.run(dag)

        self.assertTrue(pass_.property_set['is_swap_mapped'])
Exemplo n.º 10
0
    def test_true_map_in_same_layer(self):
        """ Two CXs distance 1 to each other, in the same layer
         qr0:--(+)--
               |
         qr1:---.---

         qr2:--(+)--
               |
         qr3:---.---

         Coupling map: [0]--[1]--[2]--[3]
        """
        qr = QuantumRegister(4, 'qr')
        circuit = QuantumCircuit(qr)
        circuit.cx(qr[0], qr[1])
        circuit.cx(qr[2], qr[3])
        coupling = Coupling(couplingdict={0: [1], 1: [2], 2: [3]})
        dag = DAGCircuit.fromQuantumCircuit(circuit)

        pass_ = CheckMap(coupling)
        pass_.run(dag)

        self.assertTrue(pass_.property_set['is_mapped'])
Exemplo n.º 11
0
    def test_true_map(self):
        """ Mapped is easy to check
         qr0:--(Z)-[H]-(Z)-
                |       |
         qr1:---.-------|--
                        |
         qr2:-----------.--

         CouplingMap map: [1]<-[0]->[2]
        """
        qr = QuantumRegister(3, 'qr')
        circuit = QuantumCircuit(qr)
        circuit.cz(qr[0], qr[1])
        circuit.h(qr[0])
        circuit.cz(qr[0], qr[2])
        coupling = CouplingMap([(0, 1), (0, 2)])
        dag = circuit_to_dag(circuit)

        pass_ = CheckMap(coupling)
        pass_.run(dag)

        self.assertTrue(pass_.property_set['is_swap_mapped'])
        self.assertTrue(pass_.property_set['is_direction_mapped'])
Exemplo n.º 12
0
    def test_true_map_undirected(self):
        """ Mapped but with wrong direction
         qr0:--(+)-[H]--.--
                |       |
         qr1:---.-------|--
                        |
         qr2:----------(+)-

         Coupling map: [1]<-[0]->[2]
        """
        qr = QuantumRegister(3, 'qr')
        circuit = QuantumCircuit(qr)
        circuit.cx(qr[0], qr[1])
        circuit.h(qr[0])
        circuit.cx(qr[2], qr[0])
        coupling = Coupling(couplingdict={0: [1, 2]})
        dag = circuit_to_dag(circuit)

        pass_ = CheckMap(coupling)
        pass_.run(dag)

        self.assertTrue(pass_.property_set['is_mapped'])
        self.assertFalse(pass_.property_set['is_direction_mapped'])
Exemplo n.º 13
0
    def test_no_swap_multi_layer(self):
        """Can find the best layout for a circuit with multiple layers."""
        coupling = CouplingMap([[0, 1], [1, 2], [2, 3]])

        qr = QuantumRegister(4, name="qr")
        circuit = QuantumCircuit(qr)
        circuit.cx(qr[1], qr[0])
        circuit.cx(qr[0], qr[3])

        property_set = {}
        actual = BIPMapping(coupling, objective="depth")(circuit, property_set)
        self.assertEqual(2, actual.depth())

        CheckMap(coupling)(actual, property_set)
        self.assertTrue(property_set["is_swap_mapped"])
Exemplo n.º 14
0
    def test_true_map_in_same_layer(self):
        """ Two CXs distance_qubits 1 to each other, in the same layer
         qr0:--(+)--
                |
         qr1:---.---

         qr2:--(+)--
                |
         qr3:---.---

         CouplingMap map: [0]->[1]->[2]->[3]
        """
        qr = QuantumRegister(4, 'qr')
        circuit = QuantumCircuit(qr)
        circuit.cx(qr[0], qr[1])
        circuit.cx(qr[2], qr[3])
        coupling = CouplingMap([(0, 1), (1, 2), (2, 3)])
        dag = circuit_to_dag(circuit)

        pass_ = CheckMap(coupling)
        pass_.run(dag)

        self.assertTrue(pass_.property_set['is_mapped'])
        self.assertTrue(pass_.property_set['is_direction_mapped'])
Exemplo n.º 15
0
    def test_true_map_in_same_layer_undirected(self):
        """ Two CXs in the same layer, but one is wrongly directed
         qr0:--(+)--
                |
         qr1:---.---

         qr2:---.---
                |
         qr3:--(+)--

         Coupling map: [0]->[1]->[2]->[3]
        """
        qr = QuantumRegister(4, 'qr')
        circuit = QuantumCircuit(qr)
        circuit.cx(qr[0], qr[1])
        circuit.cx(qr[3], qr[2])
        coupling = Coupling(couplingdict={0: [1], 1: [2], 2: [3]})
        dag = circuit_to_dag(circuit)

        pass_ = CheckMap(coupling)
        pass_.run(dag)

        self.assertTrue(pass_.property_set['is_mapped'])
        self.assertFalse(pass_.property_set['is_direction_mapped'])
Exemplo n.º 16
0
    def setUp(self):
        coupling = [[0, 1], [1, 2], [2, 3], [3, 4], [4, 5], [5, 6]]
        coupling_map = CouplingMap(couplinglist=coupling)
        basis_gates = ['u1', 'u3', 'u2', 'cx']
        qr = QuantumRegister(7, 'q')
        layout = Layout({qr[i]: i for i in range(coupling_map.size())})

        # Create a pass manager with a variety of passes and flow control structures
        self.pass_manager = PassManager()
        self.pass_manager.append(SetLayout(layout))
        self.pass_manager.append(TrivialLayout(coupling_map), condition=lambda x: True)
        self.pass_manager.append(FullAncillaAllocation(coupling_map))
        self.pass_manager.append(EnlargeWithAncilla())
        self.pass_manager.append(Unroller(basis_gates))
        self.pass_manager.append(CheckMap(coupling_map))
        self.pass_manager.append(BarrierBeforeFinalMeasurements(), do_while=lambda x: False)
        self.pass_manager.append(CXDirection(coupling_map))
        self.pass_manager.append(RemoveResetInZeroState())
Exemplo n.º 17
0
        def construct_passmanager(basis_gates, coupling_map,
                                  synthesis_fidelity, pulse_optimize):
            def _repeat_condition(property_set):
                return not property_set["depth_fixed_point"]

            seed = 2
            _map = [SabreLayout(coupling_map, max_iterations=2, seed=seed)]
            _embed = [
                FullAncillaAllocation(coupling_map),
                EnlargeWithAncilla(),
                ApplyLayout()
            ]
            _unroll3q = Unroll3qOrMore()
            _swap_check = CheckMap(coupling_map)
            _swap = [
                BarrierBeforeFinalMeasurements(),
                SabreSwap(coupling_map, heuristic="lookahead", seed=seed),
            ]
            _check_depth = [Depth(), FixedPoint("depth")]
            _optimize = [
                Collect2qBlocks(),
                ConsolidateBlocks(basis_gates=basis_gates),
                UnitarySynthesis(
                    basis_gates,
                    synthesis_fidelity,
                    coupling_map,
                    pulse_optimize=pulse_optimize,
                    natural_direction=True,
                ),
                Optimize1qGates(basis_gates),
            ]

            pm = PassManager()
            pm.append(_map)  # map to hardware by inserting swaps
            pm.append(_embed)
            pm.append(_unroll3q)
            pm.append(_swap_check)
            pm.append(_swap)
            pm.append(_check_depth + _optimize, do_while=_repeat_condition
                      )  # translate to & optimize over hardware native gates
            return pm
Exemplo n.º 18
0
    def test_multi_cregs(self):
        """Test for multiple ClassicalRegisters."""

        #                      ┌───┐ ░ ┌─┐
        # qr_0: ──■────────────┤ X ├─░─┤M├─────────
        #       ┌─┴─┐     ┌───┐└─┬─┘ ░ └╥┘┌─┐
        # qr_1: ┤ X ├──■──┤ H ├──■───░──╫─┤M├──────
        #       └───┘┌─┴─┐└───┘      ░  ║ └╥┘┌─┐
        # qr_2: ──■──┤ X ├───────────░──╫──╫─┤M├───
        #       ┌─┴─┐└───┘           ░  ║  ║ └╥┘┌─┐
        # qr_3: ┤ X ├────────────────░──╫──╫──╫─┤M├
        #       └───┘                ░  ║  ║  ║ └╥┘
        #  c: 2/════════════════════════╩══╬══╩══╬═
        #                               0  ║  1  ║
        #                                  ║     ║
        #  d: 2/═══════════════════════════╩═════╩═
        #                                  0     1
        qr = QuantumRegister(4, "qr")
        cr1 = ClassicalRegister(2, "c")
        cr2 = ClassicalRegister(2, "d")
        circuit = QuantumCircuit(qr, cr1, cr2)
        circuit.cx(qr[0], qr[1])
        circuit.cx(qr[2], qr[3])
        circuit.cx(qr[1], qr[2])
        circuit.h(qr[1])
        circuit.cx(qr[1], qr[0])
        circuit.barrier(qr)
        circuit.measure(qr[0], cr1[0])
        circuit.measure(qr[1], cr2[0])
        circuit.measure(qr[2], cr1[1])
        circuit.measure(qr[3], cr2[1])

        coupling = CouplingMap([[0, 1], [0, 2], [2, 3]])  # linear [1, 0, 2, 3]
        property_set = {}
        actual = BIPMapping(coupling, objective="depth")(circuit, property_set)
        self.assertEqual(5, actual.depth())

        CheckMap(coupling)(actual, property_set)
        self.assertTrue(property_set["is_swap_mapped"])
Exemplo n.º 19
0
    def test_multi_cregs(self):
        """Test for multiple ClassicalRegisters."""
        qr = QuantumRegister(4, "qr")
        cr1 = ClassicalRegister(2, "c")
        cr2 = ClassicalRegister(2, "d")
        circuit = QuantumCircuit(qr, cr1, cr2)
        circuit.cx(qr[0], qr[1])
        circuit.cx(qr[2], qr[3])
        circuit.cx(qr[1], qr[2])
        circuit.h(qr[1])
        circuit.cx(qr[1], qr[0])
        circuit.barrier(qr)
        circuit.measure(qr[0], cr1[0])
        circuit.measure(qr[1], cr2[0])
        circuit.measure(qr[2], cr1[1])
        circuit.measure(qr[3], cr2[1])

        coupling = CouplingMap([[0, 1], [0, 2], [2, 3]])  # linear [1, 0, 2, 3]
        property_set = {}
        actual = BIPMapping(coupling, objective="depth")(circuit, property_set)
        self.assertEqual(5, actual.depth())

        CheckMap(coupling)(actual, property_set)
        self.assertTrue(property_set["is_swap_mapped"])
Exemplo n.º 20
0
    def test_swaps_in_dummy_steps(self):
        """Test the case when swaps are inserted in dummy steps."""

        #           ┌───┐ ░            ░
        # q_0: ──■──┤ H ├─░───■────────░───■───────
        #      ┌─┴─┐├───┤ ░   │        ░   │
        # q_1: ┤ X ├┤ H ├─░───┼────■───░───┼────■──
        #      └───┘├───┤ ░   │  ┌─┴─┐ ░ ┌─┴─┐  │
        # q_2: ──■──┤ H ├─░───┼──┤ X ├─░─┤ X ├──┼──
        #      ┌─┴─┐├───┤ ░ ┌─┴─┐└───┘ ░ └───┘┌─┴─┐
        # q_3: ┤ X ├┤ H ├─░─┤ X ├──────░──────┤ X ├
        #      └───┘└───┘ ░ └───┘      ░      └───┘
        circuit = QuantumCircuit(4)
        circuit.cx(0, 1)
        circuit.cx(2, 3)
        circuit.h([0, 1, 2, 3])
        circuit.barrier()
        circuit.cx(0, 3)
        circuit.cx(1, 2)
        circuit.barrier()
        circuit.cx(0, 2)
        circuit.cx(1, 3)

        coupling = CouplingMap.from_line(4)
        property_set = {}
        actual = BIPMapping(coupling, objective="depth")(circuit, property_set)
        self.assertEqual(7, actual.depth())

        CheckMap(coupling)(actual, property_set)
        self.assertTrue(property_set["is_swap_mapped"])

        # no swaps before the first barrier
        for inst, _, _ in actual.data:
            if isinstance(inst, Barrier):
                break
            self.assertFalse(isinstance(inst, SwapGate))
Exemplo n.º 21
0
def level_2_pass_manager(pass_manager_config: PassManagerConfig) -> PassManager:
    """Level 2 pass manager: medium optimization by initial layout selection and
    gate cancellation using commutativity rules.

    This pass manager applies the user-given initial layout. If none is given, a search
    for a perfect layout (i.e. one that satisfies all 2-qubit interactions) is conducted.
    If no such layout is found, qubits are laid out on the most densely connected subset
    which also exhibits the best gate fidelitites.

    The pass manager then transforms the circuit to match the coupling constraints.
    It is then unrolled to the basis, and any flipped cx directions are fixed.
    Finally, optimizations in the form of commutative gate cancellation and redundant
    reset removal are performed.

    Note:
        In simulators where ``coupling_map=None``, only the unrolling and
        optimization stages are done.

    Args:
        pass_manager_config: configuration of the pass manager.

    Returns:
        a level 2 pass manager.

    Raises:
        TranspilerError: if the passmanager config is invalid.
    """
    basis_gates = pass_manager_config.basis_gates
    coupling_map = pass_manager_config.coupling_map
    initial_layout = pass_manager_config.initial_layout
    layout_method = pass_manager_config.layout_method or 'dense'
    routing_method = pass_manager_config.routing_method or 'stochastic'
    translation_method = pass_manager_config.translation_method or 'translator'
    scheduling_method = pass_manager_config.scheduling_method
    instruction_durations = pass_manager_config.instruction_durations
    seed_transpiler = pass_manager_config.seed_transpiler
    backend_properties = pass_manager_config.backend_properties

    # 1. Search for a perfect layout, or choose a dense layout, if no layout given
    _given_layout = SetLayout(initial_layout)

    def _choose_layout_condition(property_set):
        return not property_set['layout']

    _choose_layout_1 = CSPLayout(coupling_map, call_limit=1000, time_limit=10)
    if layout_method == 'trivial':
        _choose_layout_2 = TrivialLayout(coupling_map)
    elif layout_method == 'dense':
        _choose_layout_2 = DenseLayout(coupling_map, backend_properties)
    elif layout_method == 'noise_adaptive':
        _choose_layout_2 = NoiseAdaptiveLayout(backend_properties)
    elif layout_method == 'sabre':
        _choose_layout_2 = SabreLayout(coupling_map, max_iterations=2, seed=seed_transpiler)
    else:
        raise TranspilerError("Invalid layout method %s." % layout_method)

    # 2. Extend dag/layout with ancillas using the full coupling map
    _embed = [FullAncillaAllocation(coupling_map), EnlargeWithAncilla(), ApplyLayout()]

    # 3. Unroll to 1q or 2q gates
    _unroll3q = Unroll3qOrMore()

    # 4. Swap to fit the coupling map
    _swap_check = CheckMap(coupling_map)

    def _swap_condition(property_set):
        return not property_set['is_swap_mapped']

    _swap = [BarrierBeforeFinalMeasurements()]
    if routing_method == 'basic':
        _swap += [BasicSwap(coupling_map)]
    elif routing_method == 'stochastic':
        _swap += [StochasticSwap(coupling_map, trials=20, seed=seed_transpiler)]
    elif routing_method == 'lookahead':
        _swap += [LookaheadSwap(coupling_map, search_depth=5, search_width=5)]
    elif routing_method == 'sabre':
        _swap += [SabreSwap(coupling_map, heuristic='decay', seed=seed_transpiler)]
    else:
        raise TranspilerError("Invalid routing method %s." % routing_method)

    # 5. Unroll to the basis
    if translation_method == 'unroller':
        _unroll = [Unroller(basis_gates)]
    elif translation_method == 'translator':
        from qiskit.circuit.equivalence_library import SessionEquivalenceLibrary as sel
        _unroll = [UnrollCustomDefinitions(sel, basis_gates),
                   BasisTranslator(sel, basis_gates)]
    elif translation_method == 'synthesis':
        _unroll = [
            Unroll3qOrMore(),
            Collect2qBlocks(),
            ConsolidateBlocks(basis_gates=basis_gates),
            UnitarySynthesis(basis_gates),
        ]
    else:
        raise TranspilerError("Invalid translation method %s." % translation_method)

    # 6. Fix any bad CX directions
    _direction_check = [CheckCXDirection(coupling_map)]

    def _direction_condition(property_set):
        return not property_set['is_direction_mapped']

    _direction = [CXDirection(coupling_map)]

    # 7. Remove zero-state reset
    _reset = RemoveResetInZeroState()

    # 8. 1q rotation merge and commutative cancellation iteratively until no more change in depth
    _depth_check = [Depth(), FixedPoint('depth')]

    def _opt_control(property_set):
        return not property_set['depth_fixed_point']

    _opt = [Optimize1qGates(basis_gates), CommutativeCancellation()]

    # 9. Schedule the circuit only when scheduling_method is supplied
    if scheduling_method:
        _scheduling = [TimeUnitAnalysis(instruction_durations)]
        if scheduling_method in {'alap', 'as_late_as_possible'}:
            _scheduling += [ALAPSchedule(instruction_durations)]
        elif scheduling_method in {'asap', 'as_soon_as_possible'}:
            _scheduling += [ASAPSchedule(instruction_durations)]
        else:
            raise TranspilerError("Invalid scheduling method %s." % scheduling_method)

    # Build pass manager
    pm2 = PassManager()
    if coupling_map:
        pm2.append(_given_layout)
        pm2.append(_choose_layout_1, condition=_choose_layout_condition)
        pm2.append(_choose_layout_2, condition=_choose_layout_condition)
        pm2.append(_embed)
        pm2.append(_unroll3q)
        pm2.append(_swap_check)
        pm2.append(_swap, condition=_swap_condition)
    pm2.append(_unroll)
    if coupling_map and not coupling_map.is_symmetric:
        pm2.append(_direction_check)
        pm2.append(_direction, condition=_direction_condition)
    pm2.append(_reset)
    pm2.append(_depth_check + _opt, do_while=_opt_control)
    if scheduling_method:
        pm2.append(_scheduling)

    return pm2
Exemplo n.º 22
0
def level_3_pass_manager(
        pass_manager_config: PassManagerConfig) -> PassManager:
    """Level 3 pass manager: heavy optimization by noise adaptive qubit mapping and
    gate cancellation using commutativity rules and unitary synthesis.

    This pass manager applies the user-given initial layout. If none is given, a search
    for a perfect layout (i.e. one that satisfies all 2-qubit interactions) is conducted.
    If no such layout is found, and device calibration information is available, the
    circuit is mapped to the qubits with best readouts and to CX gates with highest fidelity.

    The pass manager then transforms the circuit to match the coupling constraints.
    It is then unrolled to the basis, and any flipped cx directions are fixed.
    Finally, optimizations in the form of commutative gate cancellation, resynthesis
    of two-qubit unitary blocks, and redundant reset removal are performed.

    Note:
        In simulators where ``coupling_map=None``, only the unrolling and
        optimization stages are done.

    Args:
        pass_manager_config: configuration of the pass manager.

    Returns:
        a level 3 pass manager.

    Raises:
        TranspilerError: if the passmanager config is invalid.
    """
    basis_gates = pass_manager_config.basis_gates
    coupling_map = pass_manager_config.coupling_map
    initial_layout = pass_manager_config.initial_layout
    layout_method = pass_manager_config.layout_method or 'dense'
    routing_method = pass_manager_config.routing_method or 'stochastic'
    translation_method = pass_manager_config.translation_method or 'translator'
    scheduling_method = pass_manager_config.scheduling_method
    instruction_durations = pass_manager_config.instruction_durations
    seed_transpiler = pass_manager_config.seed_transpiler
    backend_properties = pass_manager_config.backend_properties

    # 1. Unroll to 1q or 2q gates
    _unroll3q = Unroll3qOrMore()

    # 2. Layout on good qubits if calibration info available, otherwise on dense links
    _given_layout = SetLayout(initial_layout)

    def _choose_layout_condition(property_set):
        return not property_set['layout']

    _choose_layout_1 = [] if pass_manager_config.layout_method \
        else CSPLayout(coupling_map, call_limit=10000, time_limit=60, seed=seed_transpiler)
    if layout_method == 'trivial':
        _choose_layout_2 = TrivialLayout(coupling_map)
    elif layout_method == 'dense':
        _choose_layout_2 = DenseLayout(coupling_map, backend_properties)
    elif layout_method == 'noise_adaptive':
        _choose_layout_2 = NoiseAdaptiveLayout(backend_properties)
    elif layout_method == 'sabre':
        _choose_layout_2 = SabreLayout(coupling_map,
                                       max_iterations=4,
                                       seed=seed_transpiler)
    else:
        raise TranspilerError("Invalid layout method %s." % layout_method)

    # 3. Extend dag/layout with ancillas using the full coupling map
    _embed = [
        FullAncillaAllocation(coupling_map),
        EnlargeWithAncilla(),
        ApplyLayout()
    ]

    # 4. Swap to fit the coupling map
    _swap_check = CheckMap(coupling_map)

    def _swap_condition(property_set):
        return not property_set['is_swap_mapped']

    _swap = [BarrierBeforeFinalMeasurements()]
    if routing_method == 'basic':
        _swap += [BasicSwap(coupling_map)]
    elif routing_method == 'stochastic':
        _swap += [
            StochasticSwap(coupling_map, trials=200, seed=seed_transpiler)
        ]
    elif routing_method == 'lookahead':
        _swap += [LookaheadSwap(coupling_map, search_depth=5, search_width=6)]
    elif routing_method == 'sabre':
        _swap += [
            SabreSwap(coupling_map, heuristic='decay', seed=seed_transpiler)
        ]
    elif routing_method == 'none':
        _swap += [
            Error(
                msg=
                'No routing method selected, but circuit is not routed to device. '
                'CheckMap Error: {check_map_msg}',
                action='raise')
        ]
    else:
        raise TranspilerError("Invalid routing method %s." % routing_method)

    # 5. Unroll to the basis
    if translation_method == 'unroller':
        _unroll = [Unroller(basis_gates)]
    elif translation_method == 'translator':
        from qiskit.circuit.equivalence_library import SessionEquivalenceLibrary as sel
        _unroll = [
            UnrollCustomDefinitions(sel, basis_gates),
            BasisTranslator(sel, basis_gates)
        ]
    elif translation_method == 'synthesis':
        _unroll = [
            Unroll3qOrMore(),
            Collect2qBlocks(),
            ConsolidateBlocks(basis_gates=basis_gates),
            UnitarySynthesis(basis_gates),
        ]
    else:
        raise TranspilerError("Invalid translation method %s." %
                              translation_method)

    # 6. Fix any CX direction mismatch
    _direction_check = [CheckCXDirection(coupling_map)]

    def _direction_condition(property_set):
        return not property_set['is_direction_mapped']

    _direction = [CXDirection(coupling_map)]

    # 8. Optimize iteratively until no more change in depth. Removes useless gates
    # after reset and before measure, commutes gates and optimizes contiguous blocks.
    _depth_check = [Depth(), FixedPoint('depth')]

    def _opt_control(property_set):
        return not property_set['depth_fixed_point']

    _reset = [RemoveResetInZeroState()]

    _meas = [OptimizeSwapBeforeMeasure(), RemoveDiagonalGatesBeforeMeasure()]

    _opt = [
        Collect2qBlocks(),
        ConsolidateBlocks(basis_gates=basis_gates),
        UnitarySynthesis(basis_gates),
        Optimize1qGatesDecomposition(basis_gates),
        CommutativeCancellation(),
    ]

    # Schedule the circuit only when scheduling_method is supplied
    if scheduling_method:
        _scheduling = [TimeUnitAnalysis(instruction_durations)]
        if scheduling_method in {'alap', 'as_late_as_possible'}:
            _scheduling += [ALAPSchedule(instruction_durations)]
        elif scheduling_method in {'asap', 'as_soon_as_possible'}:
            _scheduling += [ASAPSchedule(instruction_durations)]
        else:
            raise TranspilerError("Invalid scheduling method %s." %
                                  scheduling_method)

    # Build pass manager
    pm3 = PassManager()
    pm3.append(_unroll3q)
    pm3.append(_reset + _meas)
    if coupling_map or initial_layout:
        pm3.append(_given_layout)
        pm3.append(_choose_layout_1, condition=_choose_layout_condition)
        pm3.append(_choose_layout_2, condition=_choose_layout_condition)
        pm3.append(_embed)
        pm3.append(_swap_check)
        pm3.append(_swap, condition=_swap_condition)
    pm3.append(_unroll)
    pm3.append(_depth_check + _opt + _unroll, do_while=_opt_control)
    if coupling_map and not coupling_map.is_symmetric:
        pm3.append(_direction_check)
        pm3.append(_direction, condition=_direction_condition)
    pm3.append(_reset)
    if scheduling_method:
        pm3.append(_scheduling)

    return pm3
Exemplo n.º 23
0
def level_3_pass_manager(transpile_config):
    """
    Level 3 pass manager: heavy optimization by noise adaptive qubit mapping and
    gate cancellation using commutativity rules and unitary synthesis.

    This pass manager applies the user-given initial layout. If none is given, and
    device calibration information is available, the circuit is mapped to the qubits
    with best readouts and to CX gates with highest fidelity. Otherwise, a layout on
    the most densely connected qubits is used.
    The pass manager then transforms the circuit to match the coupling constraints.
    It is then unrolled to the basis, and any flipped cx directions are fixed.
    Finally, optimizations in the form of commutative gate cancellation, resynthesis
    of two-qubit unitary blocks, and redundant reset removal are performed.
    Note: in simulators where coupling_map=None, only the unrolling and optimization
    stages are done.

    Args:
        transpile_config (TranspileConfig)

    Returns:
        PassManager: a level 3 pass manager.
    """
    basis_gates = transpile_config.basis_gates
    coupling_map = transpile_config.coupling_map
    initial_layout = transpile_config.initial_layout
    seed_transpiler = transpile_config.seed_transpiler
    backend_properties = transpile_config.backend_properties

    # 1. Unroll to the basis first, to prepare for noise-adaptive layout
    _unroll = Unroller(basis_gates)

    # 2. Layout on good qubits if calibration info available, otherwise on dense links
    _given_layout = SetLayout(initial_layout)

    def _choose_layout_condition(property_set):
        return not property_set['layout']

    _choose_layout = DenseLayout(coupling_map)
    if backend_properties:
        _choose_layout = NoiseAdaptiveLayout(backend_properties)

    # 3. Extend dag/layout with ancillas using the full coupling map
    _embed = [
        FullAncillaAllocation(coupling_map),
        EnlargeWithAncilla(),
        ApplyLayout()
    ]

    # 4. Unroll to 1q or 2q gates, swap to fit the coupling map
    _swap_check = CheckMap(coupling_map)

    def _swap_condition(property_set):
        return not property_set['is_swap_mapped']

    _swap = [
        BarrierBeforeFinalMeasurements(),
        Unroll3qOrMore(),
        StochasticSwap(coupling_map, trials=20, seed=seed_transpiler),
        Decompose(SwapGate)
    ]

    _direction_check = [CheckCXDirection(coupling_map)]

    def _direction_condition(property_set):
        return not property_set['is_direction_mapped']

    _direction = [CXDirection(coupling_map)]

    # 5. 1q rotation merge and commutative cancellation iteratively until no more change in depth
    _depth_check = [Depth(), FixedPoint('depth')]

    def _opt_control(property_set):
        return not property_set['depth_fixed_point']

    _opt = [
        RemoveResetInZeroState(),
        Collect2qBlocks(),
        ConsolidateBlocks(),
        Unroller(basis_gates),  # unroll unitaries
        Optimize1qGates(),
        CommutativeCancellation(),
        OptimizeSwapBeforeMeasure(),
        RemoveDiagonalGatesBeforeMeasure()
    ]

    if coupling_map:
        _opt.append(CXDirection(coupling_map))
        # if a coupling map has been provided, match coupling

    pm3 = PassManager()
    pm3.append(_unroll)
    if coupling_map:
        pm3.append(_given_layout)
        pm3.append(_choose_layout, condition=_choose_layout_condition)
        pm3.append(_embed)
        pm3.append(_swap_check)
        pm3.append(_swap, condition=_swap_condition)
        if not coupling_map.is_symmetric:
            pm3.append(_direction_check)
            pm3.append(_direction, condition=_direction_condition)
    pm3.append(_depth_check + _opt, do_while=_opt_control)

    return pm3
Exemplo n.º 24
0
def level_2_pass_manager(
        pass_manager_config: PassManagerConfig) -> PassManager:
    """Level 2 pass manager: medium optimization by initial layout selection and
    gate cancellation using commutativity rules.

    This pass manager applies the user-given initial layout. If none is given, a search
    for a perfect layout (i.e. one that satisfies all 2-qubit interactions) is conducted.
    If no such layout is found, qubits are laid out on the most densely connected subset
    which also exhibits the best gate fidelitites.

    The pass manager then transforms the circuit to match the coupling constraints.
    It is then unrolled to the basis, and any flipped cx directions are fixed.
    Finally, optimizations in the form of commutative gate cancellation and redundant
    reset removal are performed.

    Note:
        In simulators where ``coupling_map=None``, only the unrolling and
        optimization stages are done.

    Args:
        pass_manager_config: configuration of the pass manager.

    Returns:
        a level 2 pass manager.
    """
    basis_gates = pass_manager_config.basis_gates
    coupling_map = pass_manager_config.coupling_map
    initial_layout = pass_manager_config.initial_layout
    seed_transpiler = pass_manager_config.seed_transpiler
    backend_properties = pass_manager_config.backend_properties

    # 1. Search for a perfect layout, or choose a dense layout, if no layout given
    _given_layout = SetLayout(initial_layout)

    def _choose_layout_condition(property_set):
        return not property_set['layout']

    _choose_layout_1 = CSPLayout(coupling_map, call_limit=1000, time_limit=10)
    _choose_layout_2 = DenseLayout(coupling_map, backend_properties)

    # 2. Extend dag/layout with ancillas using the full coupling map
    _embed = [
        FullAncillaAllocation(coupling_map),
        EnlargeWithAncilla(),
        ApplyLayout()
    ]

    # 3. Unroll to 1q or 2q gates
    _unroll3q = Unroll3qOrMore()

    # 4. Swap to fit the coupling map
    _swap_check = CheckMap(coupling_map)

    def _swap_condition(property_set):
        return not property_set['is_swap_mapped']

    _swap = [
        BarrierBeforeFinalMeasurements(),
        StochasticSwap(coupling_map, trials=20, seed=seed_transpiler)
    ]

    # 5. Unroll to the basis
    _unroll = Unroller(basis_gates)

    # 6. Fix any bad CX directions
    _direction_check = [CheckCXDirection(coupling_map)]

    def _direction_condition(property_set):
        return not property_set['is_direction_mapped']

    _direction = [CXDirection(coupling_map)]

    # 7. Remove zero-state reset
    _reset = RemoveResetInZeroState()

    # 8. 1q rotation merge and commutative cancellation iteratively until no more change in depth
    _depth_check = [Depth(), FixedPoint('depth')]

    def _opt_control(property_set):
        return not property_set['depth_fixed_point']

    _opt = [Optimize1qGates(), CommutativeCancellation()]

    # Build pass manager
    pm2 = PassManager()
    if coupling_map:
        pm2.append(_given_layout)
        pm2.append(_choose_layout_1, condition=_choose_layout_condition)
        pm2.append(_choose_layout_2, condition=_choose_layout_condition)
        pm2.append(_embed)
        pm2.append(_unroll3q)
        pm2.append(_swap_check)
        pm2.append(_swap, condition=_swap_condition)
    pm2.append(_unroll)
    if coupling_map and not coupling_map.is_symmetric:
        pm2.append(_direction_check)
        pm2.append(_direction, condition=_direction_condition)
    pm2.append(_reset)
    pm2.append(_depth_check + _opt, do_while=_opt_control)

    return pm2
Exemplo n.º 25
0
def level_1_pass_manager(pass_manager_config):
    """
    Level 1 pass manager: light optimization by simple adjacent gate collapsing

    This pass manager applies the user-given initial layout. If none is given, and a trivial
    layout (i-th virtual -> i-th physical) makes the circuit fit the coupling map, that is used.
    Otherwise, the circuit is mapped to the most densely connected coupling subgraph, and swaps
    are inserted to map. Any unused physical qubit is allocated as ancilla space.
    The pass manager then unrolls the circuit to the desired basis, and transforms the
    circuit to match the coupling map. Finally, optimizations in the form of adjacent
    gate collapse and redundant reset removal are performed.
    Note: in simulators where coupling_map=None, only the unrolling and optimization
    stages are done.

    Args:
        pass_manager_config (PassManagerConfig)

    Returns:
        PassManager: a level 1 pass manager.
    """
    basis_gates = pass_manager_config.basis_gates
    coupling_map = pass_manager_config.coupling_map
    initial_layout = pass_manager_config.initial_layout
    seed_transpiler = pass_manager_config.seed_transpiler
    backend_properties = pass_manager_config.backend_properties

    # 1. Use trivial layout if no layout given
    _set_initial_layout = SetLayout(initial_layout)

    def _choose_layout_condition(property_set):
        return not property_set['layout']

    # 2. Use a better layout on densely connected qubits, if circuit needs swaps
    def _not_perfect_yet(property_set):
        return property_set['trivial_layout_score'] is not None and \
               property_set['trivial_layout_score'] != 0

    # 3. Extend dag/layout with ancillas using the full coupling map
    _embed = [
        FullAncillaAllocation(coupling_map),
        EnlargeWithAncilla(),
        ApplyLayout()
    ]

    # 4. Unroll to the basis
    _unroll = Unroller(basis_gates)

    # 5. Swap to fit the coupling map
    _swap_check = CheckMap(coupling_map)

    def _swap_condition(property_set):
        return not property_set['is_swap_mapped']

    _swap = [
        BarrierBeforeFinalMeasurements(),
        Unroll3qOrMore(),
        StochasticSwap(coupling_map, trials=20, seed=seed_transpiler),
        Decompose(SwapGate)
    ]

    # 6. Fix any bad CX directions
    _direction_check = [CheckCXDirection(coupling_map)]

    def _direction_condition(property_set):
        return not property_set['is_direction_mapped']

    _direction = [CXDirection(coupling_map)]

    # 7. Remove zero-state reset
    _reset = RemoveResetInZeroState()

    # 8. Merge 1q rotations and cancel CNOT gates iteratively until no more change in depth
    _depth_check = [Depth(), FixedPoint('depth')]

    def _opt_control(property_set):
        return not property_set['depth_fixed_point']

    _opt = [Optimize1qGates(), CXCancellation()]

    pm1 = PassManager()
    if coupling_map:
        pm1.append(_set_initial_layout)
        pm1.append([
            TrivialLayout(coupling_map),
            Layout2qDistance(coupling_map,
                             property_name='trivial_layout_score')
        ],
                   condition=_choose_layout_condition)
        pm1.append(DenseLayout(coupling_map, backend_properties),
                   condition=_not_perfect_yet)
        pm1.append(_embed)
    pm1.append(_unroll)
    if coupling_map:
        pm1.append(_swap_check)
        pm1.append(_swap, condition=_swap_condition)
        if not coupling_map.is_symmetric:
            pm1.append(_direction_check)
            pm1.append(_direction, condition=_direction_condition)
    pm1.append(_reset)
    pm1.append(_depth_check + _opt, do_while=_opt_control)

    return pm1
Exemplo n.º 26
0
def level_0_pass_manager(
        pass_manager_config: PassManagerConfig) -> PassManager:
    """Level 0 pass manager: no explicit optimization other than mapping to backend.

    This pass manager applies the user-given initial layout. If none is given, a trivial
    layout consisting of mapping the i-th virtual qubit to the i-th physical qubit is used.
    Any unused physical qubit is allocated as ancilla space.

    The pass manager then unrolls the circuit to the desired basis, and transforms the
    circuit to match the coupling map.

    Note:
        In simulators where ``coupling_map=None``, only the unrolling and
        optimization stages are done.

    Args:
        pass_manager_config: configuration of the pass manager.

    Returns:
        a level 0 pass manager.

    Raises:
        TranspilerError: if the passmanager config is invalid.
    """
    basis_gates = pass_manager_config.basis_gates
    coupling_map = pass_manager_config.coupling_map
    initial_layout = pass_manager_config.initial_layout
    layout_method = pass_manager_config.layout_method or 'trivial'
    routing_method = pass_manager_config.routing_method or 'stochastic'
    translation_method = pass_manager_config.translation_method or 'translator'
    scheduling_method = pass_manager_config.scheduling_method
    instruction_durations = pass_manager_config.instruction_durations
    seed_transpiler = pass_manager_config.seed_transpiler
    backend_properties = pass_manager_config.backend_properties

    # 1. Choose an initial layout if not set by user (default: trivial layout)
    _given_layout = SetLayout(initial_layout)

    def _choose_layout_condition(property_set):
        return not property_set['layout']

    if layout_method == 'trivial':
        _choose_layout = TrivialLayout(coupling_map)
    elif layout_method == 'dense':
        _choose_layout = DenseLayout(coupling_map, backend_properties)
    elif layout_method == 'noise_adaptive':
        _choose_layout = NoiseAdaptiveLayout(backend_properties)
    elif layout_method == 'sabre':
        _choose_layout = SabreLayout(coupling_map,
                                     max_iterations=1,
                                     seed=seed_transpiler)
    else:
        raise TranspilerError("Invalid layout method %s." % layout_method)

    # 2. Extend dag/layout with ancillas using the full coupling map
    _embed = [
        FullAncillaAllocation(coupling_map),
        EnlargeWithAncilla(),
        ApplyLayout()
    ]

    # 3. Decompose so only 1-qubit and 2-qubit gates remain
    _unroll3q = Unroll3qOrMore()

    # 4. Swap to fit the coupling map
    _swap_check = CheckMap(coupling_map)

    def _swap_condition(property_set):
        return not property_set['is_swap_mapped']

    _swap = [BarrierBeforeFinalMeasurements()]
    if routing_method == 'basic':
        _swap += [BasicSwap(coupling_map)]
    elif routing_method == 'stochastic':
        _swap += [
            StochasticSwap(coupling_map, trials=20, seed=seed_transpiler)
        ]
    elif routing_method == 'lookahead':
        _swap += [LookaheadSwap(coupling_map, search_depth=2, search_width=2)]
    elif routing_method == 'sabre':
        _swap += [
            SabreSwap(coupling_map, heuristic='basic', seed=seed_transpiler)
        ]
    else:
        raise TranspilerError("Invalid routing method %s." % routing_method)

    # 5. Unroll to the basis
    if translation_method == 'unroller':
        _unroll = [Unroller(basis_gates)]
    elif translation_method == 'translator':
        from qiskit.circuit.equivalence_library import SessionEquivalenceLibrary as sel
        _unroll = [
            UnrollCustomDefinitions(sel, basis_gates),
            BasisTranslator(sel, basis_gates)
        ]
    elif translation_method == 'synthesis':
        _unroll = [
            Unroll3qOrMore(),
            Collect2qBlocks(),
            ConsolidateBlocks(basis_gates=basis_gates),
            UnitarySynthesis(basis_gates),
        ]
    else:
        raise TranspilerError("Invalid translation method %s." %
                              translation_method)

    # 6. Fix any bad CX directions
    _direction_check = [CheckCXDirection(coupling_map)]

    def _direction_condition(property_set):
        return not property_set['is_direction_mapped']

    _direction = [CXDirection(coupling_map)]

    # 7. Schedule the circuit only when scheduling_method is supplied
    if scheduling_method:
        _scheduling = [TimeUnitAnalysis(instruction_durations)]
        if scheduling_method in {'alap', 'as_late_as_possible'}:
            _scheduling += [ALAPSchedule(instruction_durations)]
        elif scheduling_method in {'asap', 'as_soon_as_possible'}:
            _scheduling += [ASAPSchedule(instruction_durations)]
        else:
            raise TranspilerError("Invalid scheduling method %s." %
                                  scheduling_method)

    # Build pass manager
    pm0 = PassManager()
    if coupling_map:
        pm0.append(_given_layout)
        pm0.append(_choose_layout, condition=_choose_layout_condition)
        pm0.append(_embed)
        pm0.append(_unroll3q)
        pm0.append(_swap_check)
        pm0.append(_swap, condition=_swap_condition)
    pm0.append(_unroll)
    if coupling_map and not coupling_map.is_symmetric:
        pm0.append(_direction_check)
        pm0.append(_direction, condition=_direction_condition)
    if scheduling_method:
        pm0.append(_scheduling)
    return pm0
Exemplo n.º 27
0
def level_3_pass_manager(pass_manager_config: PassManagerConfig) -> PassManager:
    """Level 3 pass manager: heavy optimization by noise adaptive qubit mapping and
    gate cancellation using commutativity rules and unitary synthesis.

    This pass manager applies the user-given initial layout. If none is given, a search
    for a perfect layout (i.e. one that satisfies all 2-qubit interactions) is conducted.
    If no such layout is found, and device calibration information is available, the
    circuit is mapped to the qubits with best readouts and to CX gates with highest fidelity.

    The pass manager then transforms the circuit to match the coupling constraints.
    It is then unrolled to the basis, and any flipped cx directions are fixed.
    Finally, optimizations in the form of commutative gate cancellation, resynthesis
    of two-qubit unitary blocks, and redundant reset removal are performed.

    Note:
        In simulators where ``coupling_map=None``, only the unrolling and
        optimization stages are done.

    Args:
        pass_manager_config: configuration of the pass manager.

    Returns:
        a level 3 pass manager.

    Raises:
        TranspilerError: if the passmanager config is invalid.
    """
    basis_gates = pass_manager_config.basis_gates
    inst_map = pass_manager_config.inst_map
    coupling_map = pass_manager_config.coupling_map
    initial_layout = pass_manager_config.initial_layout
    layout_method = pass_manager_config.layout_method or "sabre"
    routing_method = pass_manager_config.routing_method or "sabre"
    translation_method = pass_manager_config.translation_method or "translator"
    scheduling_method = pass_manager_config.scheduling_method
    instruction_durations = pass_manager_config.instruction_durations
    seed_transpiler = pass_manager_config.seed_transpiler
    backend_properties = pass_manager_config.backend_properties
    approximation_degree = pass_manager_config.approximation_degree
    unitary_synthesis_method = pass_manager_config.unitary_synthesis_method
    timing_constraints = pass_manager_config.timing_constraints or TimingConstraints()
    unitary_synthesis_plugin_config = pass_manager_config.unitary_synthesis_plugin_config
    target = pass_manager_config.target

    # 1. Unroll to 1q or 2q gates
    _unroll3q = [
        # Use unitary synthesis for basis aware decomposition of UnitaryGates
        UnitarySynthesis(
            basis_gates,
            approximation_degree=approximation_degree,
            method=unitary_synthesis_method,
            plugin_config=unitary_synthesis_plugin_config,
            min_qubits=3,
        ),
        Unroll3qOrMore(),
    ]

    # 2. Layout on good qubits if calibration info available, otherwise on dense links
    _given_layout = SetLayout(initial_layout)

    def _choose_layout_condition(property_set):
        # layout hasn't been set yet
        return not property_set["layout"]

    def _csp_not_found_match(property_set):
        # If a layout hasn't been set by the time we run csp we need to run layout
        if property_set["layout"] is None:
            return True
        # if CSP layout stopped for any reason other than solution found we need
        # to run layout since CSP didn't converge.
        if (
            property_set["CSPLayout_stop_reason"] is not None
            and property_set["CSPLayout_stop_reason"] != "solution found"
        ):
            return True
        return False

    # 2a. If layout method is not set, first try a trivial layout
    _choose_layout_0 = (
        []
        if pass_manager_config.layout_method
        else [
            TrivialLayout(coupling_map),
            Layout2qDistance(coupling_map, property_name="trivial_layout_score"),
        ]
    )
    # 2b. If trivial layout wasn't perfect (ie no swaps are needed) then try
    # using CSP layout to find a perfect layout
    _choose_layout_1 = (
        []
        if pass_manager_config.layout_method
        else CSPLayout(coupling_map, call_limit=10000, time_limit=60, seed=seed_transpiler)
    )

    def _trivial_not_perfect(property_set):
        # Verify that a trivial layout  is perfect. If trivial_layout_score > 0
        # the layout is not perfect. The layout property set is unconditionally
        # set by trivial layout so we clear that before running CSP
        if property_set["trivial_layout_score"] is not None:
            if property_set["trivial_layout_score"] != 0:
                return True
        return False

    # 2c. if CSP didn't converge on a solution use layout_method (dense).
    if layout_method == "trivial":
        _choose_layout_2 = TrivialLayout(coupling_map)
    elif layout_method == "dense":
        _choose_layout_2 = DenseLayout(coupling_map, backend_properties)
    elif layout_method == "noise_adaptive":
        _choose_layout_2 = NoiseAdaptiveLayout(backend_properties)
    elif layout_method == "sabre":
        _choose_layout_2 = SabreLayout(coupling_map, max_iterations=4, seed=seed_transpiler)
    else:
        raise TranspilerError("Invalid layout method %s." % layout_method)

    # 3. Extend dag/layout with ancillas using the full coupling map
    _embed = [FullAncillaAllocation(coupling_map), EnlargeWithAncilla(), ApplyLayout()]

    # 4. Swap to fit the coupling map
    _swap_check = CheckMap(coupling_map)

    def _swap_condition(property_set):
        return not property_set["is_swap_mapped"]

    _swap = [BarrierBeforeFinalMeasurements()]
    if routing_method == "basic":
        _swap += [BasicSwap(coupling_map)]
    elif routing_method == "stochastic":
        _swap += [StochasticSwap(coupling_map, trials=200, seed=seed_transpiler)]
    elif routing_method == "lookahead":
        _swap += [LookaheadSwap(coupling_map, search_depth=5, search_width=6)]
    elif routing_method == "sabre":
        _swap += [SabreSwap(coupling_map, heuristic="decay", seed=seed_transpiler)]
    elif routing_method == "none":
        _swap += [
            Error(
                msg=(
                    "No routing method selected, but circuit is not routed to device. "
                    "CheckMap Error: {check_map_msg}"
                ),
                action="raise",
            )
        ]
    else:
        raise TranspilerError("Invalid routing method %s." % routing_method)

    # 5. Unroll to the basis
    if translation_method == "unroller":
        _unroll = [Unroller(basis_gates)]
    elif translation_method == "translator":
        from qiskit.circuit.equivalence_library import SessionEquivalenceLibrary as sel

        _unroll = [
            UnitarySynthesis(
                basis_gates,
                approximation_degree=approximation_degree,
                coupling_map=coupling_map,
                backend_props=backend_properties,
                plugin_config=unitary_synthesis_plugin_config,
                method=unitary_synthesis_method,
            ),
            UnrollCustomDefinitions(sel, basis_gates),
            BasisTranslator(sel, basis_gates, target),
        ]
    elif translation_method == "synthesis":
        _unroll = [
            UnitarySynthesis(
                basis_gates,
                approximation_degree=approximation_degree,
                coupling_map=coupling_map,
                backend_props=backend_properties,
                method=unitary_synthesis_method,
                plugin_config=unitary_synthesis_plugin_config,
                min_qubits=3,
            ),
            Unroll3qOrMore(),
            Collect2qBlocks(),
            ConsolidateBlocks(basis_gates=basis_gates),
            UnitarySynthesis(
                basis_gates,
                approximation_degree=approximation_degree,
                coupling_map=coupling_map,
                backend_props=backend_properties,
                method=unitary_synthesis_method,
                plugin_config=unitary_synthesis_plugin_config,
            ),
        ]
    else:
        raise TranspilerError("Invalid translation method %s." % translation_method)

    # 6. Fix any CX direction mismatch
    _direction_check = [CheckGateDirection(coupling_map, target)]

    def _direction_condition(property_set):
        return not property_set["is_direction_mapped"]

    _direction = [GateDirection(coupling_map, target)]

    # 8. Optimize iteratively until no more change in depth. Removes useless gates
    # after reset and before measure, commutes gates and optimizes contiguous blocks.
    _depth_check = [Depth(), FixedPoint("depth")]

    def _opt_control(property_set):
        return not property_set["depth_fixed_point"]

    _reset = [RemoveResetInZeroState()]

    _meas = [OptimizeSwapBeforeMeasure(), RemoveDiagonalGatesBeforeMeasure()]

    _opt = [
        Collect2qBlocks(),
        ConsolidateBlocks(basis_gates=basis_gates),
        UnitarySynthesis(
            basis_gates,
            approximation_degree=approximation_degree,
            coupling_map=coupling_map,
            backend_props=backend_properties,
            method=unitary_synthesis_method,
            plugin_config=unitary_synthesis_plugin_config,
        ),
        Optimize1qGatesDecomposition(basis_gates),
        CommutativeCancellation(),
    ]

    # 9. Unify all durations (either SI, or convert to dt if known)
    # Schedule the circuit only when scheduling_method is supplied
    _time_unit_setup = [ContainsInstruction("delay")]
    _time_unit_conversion = [TimeUnitConversion(instruction_durations)]

    def _contains_delay(property_set):
        return property_set["contains_delay"]

    _scheduling = []
    if scheduling_method:
        _scheduling += _time_unit_conversion
        if scheduling_method in {"alap", "as_late_as_possible"}:
            _scheduling += [ALAPSchedule(instruction_durations)]
        elif scheduling_method in {"asap", "as_soon_as_possible"}:
            _scheduling += [ASAPSchedule(instruction_durations)]
        else:
            raise TranspilerError("Invalid scheduling method %s." % scheduling_method)

    # 10. Call measure alignment. Should come after scheduling.
    if (
        timing_constraints.granularity != 1
        or timing_constraints.min_length != 1
        or timing_constraints.acquire_alignment != 1
    ):
        _alignments = [
            ValidatePulseGates(
                granularity=timing_constraints.granularity, min_length=timing_constraints.min_length
            ),
            AlignMeasures(alignment=timing_constraints.acquire_alignment),
        ]
    else:
        _alignments = []

    # Build pass manager
    pm3 = PassManager()
    pm3.append(_unroll3q)
    pm3.append(_reset + _meas)
    if coupling_map or initial_layout:
        pm3.append(_given_layout)
        pm3.append(_choose_layout_0, condition=_choose_layout_condition)
        pm3.append(_choose_layout_1, condition=_trivial_not_perfect)
        pm3.append(_choose_layout_2, condition=_csp_not_found_match)
        pm3.append(_embed)
        pm3.append(_swap_check)
        pm3.append(_swap, condition=_swap_condition)
    pm3.append(_unroll)
    if (coupling_map and not coupling_map.is_symmetric) or (
        target is not None and target.get_non_global_operation_names(strict_direction=True)
    ):
        pm3.append(_direction_check)
        pm3.append(_direction, condition=_direction_condition)
        pm3.append(_reset)
        # For transpiling to a target we need to run GateDirection in the
        # optimization loop to correct for incorrect directions that might be
        # inserted by UnitarySynthesis which is direction aware but only via
        # the coupling map which with a target doesn't give a full picture
        if target is not None:
            pm3.append(_depth_check + _opt + _unroll + _direction, do_while=_opt_control)
        else:
            pm3.append(_depth_check + _opt + _unroll, do_while=_opt_control)
    else:
        pm3.append(_reset)
        pm3.append(_depth_check + _opt + _unroll, do_while=_opt_control)
    if inst_map and inst_map.has_custom_gate():
        pm3.append(PulseGates(inst_map=inst_map))
    if scheduling_method:
        pm3.append(_scheduling)
    elif instruction_durations:
        pm3.append(_time_unit_setup)
        pm3.append(_time_unit_conversion, condition=_contains_delay)
    pm3.append(_alignments)

    return pm3
Exemplo n.º 28
0
def level_1_pass_manager(
        pass_manager_config: PassManagerConfig) -> PassManager:
    """Level 1 pass manager: light optimization by simple adjacent gate collapsing.

    This pass manager applies the user-given initial layout. If none is given,
    and a trivial layout (i-th virtual -> i-th physical) makes the circuit fit
    the coupling map, that is used.
    Otherwise, the circuit is mapped to the most densely connected coupling subgraph,
    and swaps are inserted to map. Any unused physical qubit is allocated as ancilla space.
    The pass manager then unrolls the circuit to the desired basis, and transforms the
    circuit to match the coupling map. Finally, optimizations in the form of adjacent
    gate collapse and redundant reset removal are performed.

    Note:
        In simulators where ``coupling_map=None``, only the unrolling and
        optimization stages are done.

    Args:
        pass_manager_config: configuration of the pass manager.

    Returns:
        a level 1 pass manager.

    Raises:
        TranspilerError: if the passmanager config is invalid.
    """
    basis_gates = pass_manager_config.basis_gates
    coupling_map = pass_manager_config.coupling_map
    initial_layout = pass_manager_config.initial_layout
    layout_method = pass_manager_config.layout_method or 'dense'
    routing_method = pass_manager_config.routing_method or 'stochastic'
    seed_transpiler = pass_manager_config.seed_transpiler
    backend_properties = pass_manager_config.backend_properties

    # 1. Use trivial layout if no layout given
    _given_layout = SetLayout(initial_layout)

    _choose_layout_and_score = [
        TrivialLayout(coupling_map),
        Layout2qDistance(coupling_map, property_name='trivial_layout_score')
    ]

    def _choose_layout_condition(property_set):
        return not property_set['layout']

    # 2. Use a better layout on densely connected qubits, if circuit needs swaps
    if layout_method == 'trivial':
        _improve_layout = TrivialLayout(coupling_map)
    elif layout_method == 'dense':
        _improve_layout = DenseLayout(coupling_map, backend_properties)
    elif layout_method == 'noise_adaptive':
        _improve_layout = NoiseAdaptiveLayout(backend_properties)
    else:
        raise TranspilerError("Invalid layout method %s." % layout_method)

    def _not_perfect_yet(property_set):
        return property_set['trivial_layout_score'] is not None and \
               property_set['trivial_layout_score'] != 0

    # 3. Extend dag/layout with ancillas using the full coupling map
    _embed = [
        FullAncillaAllocation(coupling_map),
        EnlargeWithAncilla(),
        ApplyLayout()
    ]

    # 4. Decompose so only 1-qubit and 2-qubit gates remain
    _unroll3q = Unroll3qOrMore()

    # 5. Swap to fit the coupling map
    _swap_check = CheckMap(coupling_map)

    def _swap_condition(property_set):
        return not property_set['is_swap_mapped']

    _swap = [BarrierBeforeFinalMeasurements()]
    if routing_method == 'basic':
        _swap += [BasicSwap(coupling_map)]
    elif routing_method == 'stochastic':
        _swap += [
            StochasticSwap(coupling_map, trials=20, seed=seed_transpiler)
        ]
    elif routing_method == 'lookahead':
        _swap += [LookaheadSwap(coupling_map, search_depth=4, search_width=4)]
    else:
        raise TranspilerError("Invalid routing method %s." % routing_method)

    # 6. Unroll to the basis
    _unroll = Unroller(basis_gates)

    # 7. Fix any bad CX directions
    _direction_check = [CheckCXDirection(coupling_map)]

    def _direction_condition(property_set):
        return not property_set['is_direction_mapped']

    _direction = [CXDirection(coupling_map)]

    # 8. Remove zero-state reset
    _reset = RemoveResetInZeroState()

    # 9. Merge 1q rotations and cancel CNOT gates iteratively until no more change in depth
    _depth_check = [Depth(), FixedPoint('depth')]

    def _opt_control(property_set):
        return not property_set['depth_fixed_point']

    _opt = [Optimize1qGates(basis_gates), CXCancellation()]

    # Build pass manager
    pm1 = PassManager()
    if coupling_map:
        pm1.append(_given_layout)
        pm1.append(_choose_layout_and_score,
                   condition=_choose_layout_condition)
        pm1.append(_improve_layout, condition=_not_perfect_yet)
        pm1.append(_embed)
        pm1.append(_unroll3q)
        pm1.append(_swap_check)
        pm1.append(_swap, condition=_swap_condition)
    pm1.append(_unroll)
    if coupling_map and not coupling_map.is_symmetric:
        pm1.append(_direction_check)
        pm1.append(_direction, condition=_direction_condition)
    pm1.append(_reset)
    pm1.append(_depth_check + _opt, do_while=_opt_control)

    return pm1
Exemplo n.º 29
0
def level_0_pass_manager(transpile_config):
    """
    Level 0 pass manager: no explicit optimization other than mapping to backend.

    This pass manager applies the user-given initial layout. If none is given, a trivial
    layout consisting of mapping the i-th virtual qubit to the i-th physical qubit is used.
    Any unused physical qubit is allocated as ancilla space.
    The pass manager then unrolls the circuit to the desired basis, and transforms the
    circuit to match the coupling map. Finally, extra resets are removed.
    Note: in simulators where coupling_map=None, only the unrolling and optimization
    stages are done.

    Args:
        transpile_config (TranspileConfig)

    Returns:
        PassManager: a level 0 pass manager.
    """
    basis_gates = transpile_config.basis_gates
    coupling_map = transpile_config.coupling_map
    initial_layout = transpile_config.initial_layout
    seed_transpiler = transpile_config.seed_transpiler

    # 1. Use trivial layout if no layout given
    _given_layout = SetLayout(initial_layout)

    def _choose_layout_condition(property_set):
        return not property_set['layout']

    _choose_layout = TrivialLayout(coupling_map)

    # 2. Extend dag/layout with ancillas using the full coupling map
    _embed = [FullAncillaAllocation(coupling_map), EnlargeWithAncilla()]

    # 3. Unroll to the basis
    _unroll = Unroller(basis_gates)

    # 4. Swap to fit the coupling map
    _swap_check = CheckMap(coupling_map)

    def _swap_condition(property_set):
        return not property_set['is_swap_mapped']

    _swap = [
        BarrierBeforeFinalMeasurements(),
        LegacySwap(coupling_map, trials=20, seed=seed_transpiler),
        Decompose(SwapGate)
    ]

    # 5. Fix any bad CX directions
    # _direction_check = CheckCXDirection(coupling_map)  # TODO
    def _direction_condition(property_set):
        return not property_set['is_direction_mapped']

    _direction = [CXDirection(coupling_map)]

    # 6. Remove zero-state reset
    _reset = RemoveResetInZeroState()

    pm0 = PassManager()
    if coupling_map:
        pm0.append(_given_layout)
        pm0.append(_choose_layout, condition=_choose_layout_condition)
        pm0.append(_embed)
    pm0.append(_unroll)
    if coupling_map:
        pm0.append(_swap_check)
        pm0.append(_swap, condition=_swap_condition)
        # pm0.append(_direction_check)  # TODO
        pm0.append(_direction, condition=_direction_condition)
    pm0.append(_reset)

    return pm0
Exemplo n.º 30
0
def noise_pass_manager(basis_gates=None,
                       initial_layout=None,
                       coupling_map=None,
                       layout_method=None,
                       translation_method=None,
                       seed_transpiler=None,
                       backend=None,
                       routing_method=None,
                       backend_properties=None,
                       transform=False,
                       readout=True,
                       alpha=0.5,
                       next_gates=5,
                       front=True) -> PassManager:
    """Level 3 pass manager: heavy optimization by noise adaptive qubit mapping and
    gate cancellation using commutativity rules and unitary synthesis.

    This pass manager applies the user-given initial layout. If none is given, a search
    for a perfect layout (i.e. one that satisfies all 2-qubit interactions) is conducted.
    If no such layout is found, and device calibration information is available, the
    circuit is mapped to the qubits with best readouts and to CX gates with highest fidelity.

    The pass manager then transforms the circuit to match the coupling constraints.
    It is then unrolled to the basis, and any flipped cx directions are fixed.
    Finally, optimizations in the form of commutative gate cancellation, resynthesis
    of two-qubit unitary blocks, and redundant reset removal are performed.

    Note:
        In simulators where ``coupling_map=None``, only the unrolling and
        optimization stages are done.

    Args:
        backend (BaseBackend)

    Returns:
        a level 3 pass manager.

    Raises:
        TranspilerError: if the passmanager config is invalid.
    """
    if basis_gates is None:
        if getattr(backend, 'configuration', None):
            basis_gates = getattr(backend.configuration(), 'basis_gates', None)
        # basis_gates could be None, or a list of basis, e.g. ['u3', 'cx']
    if isinstance(basis_gates, list) and all(
            isinstance(i, str) for i in basis_gates):
        basis_gates = basis_gates
    if basis_gates is None:
        basis_gates = ['u3', 'cx', 'id']
    # basis_gates = ['u3', 'cx', 'id']
    backend = backend
    if backend is None or backend.configuration().simulator:
        if backend_properties is None or coupling_map is None:
            raise QiskitError(
                "Backend is simulator or not specified, provide backend properties and coupling map."
            )
        coupling_map = coupling_map
        backend_properties = backend_properties
    else:
        if backend_properties is not None or coupling_map is not None:
            warnings.warn(
                "A backend was provide, ignoring backend properties and coupling map",
                UserWarning)
        coupling_map = backend.configuration().coupling_map
        backend_properties = backend.properties()

    if isinstance(coupling_map, list):
        coupling_map = CouplingMap(couplinglist=coupling_map)

    initial_layout = initial_layout
    layout_method = layout_method or 'dense'
    routing_method = routing_method or 'stochastic'
    translation_method = translation_method or 'translator'
    seed_transpiler = seed_transpiler

    # 1. Unroll to 1q or 2q gates
    _unroll3q = Unroll3qOrMore()

    # 2. Layout on good qubits if calibration info available, otherwise on dense links
    _given_layout = SetLayout(initial_layout)

    def _choose_layout_condition(property_set):
        return not property_set['layout']

    _choose_layout_1 = CSPLayout(coupling_map, call_limit=10000, time_limit=60)
    if layout_method == 'trivial':
        _choose_layout_2 = TrivialLayout(coupling_map)
    elif layout_method == 'dense':
        _choose_layout_2 = DenseLayout(coupling_map, backend_properties)
    elif layout_method == 'noise_adaptive':
        _choose_layout_2 = NoiseAdaptiveLayout(backend_properties)
    elif layout_method == 'sabre':
        _choose_layout_2 = SabreLayout(coupling_map,
                                       max_iterations=4,
                                       seed=seed_transpiler)
    elif layout_method == 'chain':
        _choose_layout_2 = ChainLayout(coupling_map,
                                       backend_properties,
                                       readout=readout)
    else:
        raise TranspilerError("Invalid layout method %s." % layout_method)

    # 3. Extend dag/layout with ancillas using the full coupling map
    _embed = [
        FullAncillaAllocation(coupling_map),
        EnlargeWithAncilla(),
        ApplyLayout()
    ]

    # 4. Swap to fit the coupling map
    _swap_check = CheckMap(coupling_map)

    def _swap_condition(property_set):
        return not property_set['is_swap_mapped']

    _swap = [BarrierBeforeFinalMeasurements()]
    if routing_method == 'basic':
        _swap += [BasicSwap(coupling_map)]
    elif routing_method == 'stochastic':
        _swap += [
            StochasticSwap(coupling_map, trials=200, seed=seed_transpiler)
        ]
    elif routing_method == 'lookahead':
        _swap += [LookaheadSwap(coupling_map, search_depth=5, search_width=6)]
    elif routing_method == 'sabre':
        _swap += [
            SabreSwap(coupling_map, heuristic='decay', seed=seed_transpiler)
        ]
    elif routing_method == 'noise_adaptive':
        _swap += [
            NoiseAdaptiveSwap(coupling_map,
                              backend_properties,
                              invert_score=invert_score,
                              swap_score=swap_score,
                              readout=readout,
                              alpha=alpha,
                              next_gates=next_gates,
                              front=front)
        ]
    else:
        raise TranspilerError("Invalid routing method %s." % routing_method)

    # 5. Unroll to the basis
    if translation_method == 'unroller':
        _unroll = [Unroller(basis_gates)]
    elif translation_method == 'translator':
        from qiskit.circuit.equivalence_library import SessionEquivalenceLibrary as sel
        _unroll = [
            UnrollCustomDefinitions(sel, basis_gates),
            BasisTranslator(sel, basis_gates)
        ]
    elif translation_method == 'synthesis':
        _unroll = [
            Unroll3qOrMore(),
            Collect2qBlocks(),
            ConsolidateBlocks(basis_gates=basis_gates),
            UnitarySynthesis(basis_gates),
        ]
    else:
        raise TranspilerError("Invalid translation method %s." %
                              translation_method)

    # 6. Fix any CX direction mismatch
    _direction_check = [CheckCXDirection(coupling_map)]

    def _direction_condition(property_set):
        return not property_set['is_direction_mapped']

    _direction = [CXDirection(coupling_map)]

    # 8. Optimize iteratively until no more change in depth. Removes useless gates
    # after reset and before measure, commutes gates and optimizes continguous blocks.
    _depth_check = [Depth(), FixedPoint('depth')]

    def _opt_control(property_set):
        return not property_set['depth_fixed_point']

    _reset = [RemoveResetInZeroState()]

    _meas = [OptimizeSwapBeforeMeasure(), RemoveDiagonalGatesBeforeMeasure()]

    _opt = [
        Collect2qBlocks(),
        ConsolidateBlocks(basis_gates=basis_gates),
        UnitarySynthesis(basis_gates),
        Optimize1qGates(basis_gates),
        CommutativeCancellation(),
    ]

    # Build pass manager
    pm3 = PassManager()
    pm3.append(_unroll3q)
    if transform:
        _transform = TransformCxCascade()
        pm3.append(_transform)
    pm3.append(_reset + _meas)
    if coupling_map:
        pm3.append(_given_layout)
        pm3.append(_choose_layout_1, condition=_choose_layout_condition)
        pm3.append(_choose_layout_2, condition=_choose_layout_condition)
        pm3.append(_embed)
        pm3.append(_swap_check)
        pm3.append(_swap, condition=_swap_condition)
    pm3.append(_unroll)
    pm3.append(_depth_check + _opt + _unroll, do_while=_opt_control)
    if coupling_map and not coupling_map.is_symmetric:
        pm3.append(_direction_check)
        pm3.append(_direction, condition=_direction_condition)
    pm3.append(_reset)

    return pm3