def plot_bloch_vector(bloch, title="", ax=None, figsize=None, coord_type="cartesian"):
    """Plot the Bloch sphere.

    Plot a sphere, axes, the Bloch vector, and its projections onto each axis.

    Args:
        bloch (list[double]): array of three elements where [<x>, <y>, <z>] (Cartesian)
            or [<r>, <theta>, <phi>] (spherical in radians)
            <theta> is inclination angle from +z direction
            <phi> is azimuth from +x direction
        title (str): a string that represents the plot title
        ax (matplotlib.axes.Axes): An Axes to use for rendering the bloch
            sphere
        figsize (tuple): Figure size in inches. Has no effect is passing ``ax``.
        coord_type (str): a string that specifies coordinate type for bloch
            (Cartesian or spherical), default is Cartesian

    Returns:
        Figure: A matplotlib figure instance if ``ax = None``.

    Raises:
        MissingOptionalLibraryError: Requires matplotlib.

    Example:
        .. jupyter-execute::

           from qiskit.visualization import plot_bloch_vector
           %matplotlib inline

           plot_bloch_vector([0,1,0], title="New Bloch Sphere")
    """
    if not HAS_MATPLOTLIB:
        raise MissingOptionalLibraryError(
            libname="Matplotlib",
            name="plot_bloch_vector",
            pip_install="pip install matplotlib",
        )
    from qiskit.visualization.bloch import Bloch

    if figsize is None:
        figsize = (5, 5)
    B = Bloch(axes=ax)
    if coord_type == "spherical":
        r, theta, phi = bloch[0], bloch[1], bloch[2]
        bloch[0] = r * np.sin(theta) * np.cos(phi)
        bloch[1] = r * np.sin(theta) * np.sin(phi)
        bloch[2] = r * np.cos(theta)
    B.add_vectors(bloch)
    B.render(title=title)
    if ax is None:
        fig = B.fig
        fig.set_size_inches(figsize[0], figsize[1])
        matplotlib_close_if_inline(fig)
        return fig
    return None
Exemplo n.º 2
0
    def get_image(self, interactive: bool = False) -> matplotlib.pyplot.Figure:
        """Get image data to return.
        Args:
            interactive: When set `True` show the circuit in a new window.
                This depends on the matplotlib backend being used supporting this.
        Returns:
            Matplotlib figure data.
        """
        matplotlib_close_if_inline(self.figure)

        if self.figure and interactive:
            self.figure.show()

        return self.figure
def plot_state_qsphere(
    state,
    figsize=None,
    ax=None,
    show_state_labels=True,
    show_state_phases=False,
    use_degrees=False,
    *,
    rho=None,
    filename=None,
):
    """Plot the qsphere representation of a quantum state.
    Here, the size of the points is proportional to the probability
    of the corresponding term in the state and the color represents
    the phase.

    Args:
        state (Statevector or DensityMatrix or ndarray): an N-qubit quantum state.
        figsize (tuple): Figure size in inches.
        ax (matplotlib.axes.Axes): An optional Axes object to be used for
            the visualization output. If none is specified a new matplotlib
            Figure will be created and used. Additionally, if specified there
            will be no returned Figure since it is redundant.
        show_state_labels (bool): An optional boolean indicating whether to
            show labels for each basis state.
        show_state_phases (bool): An optional boolean indicating whether to
            show the phase for each basis state.
        use_degrees (bool): An optional boolean indicating whether to use
            radians or degrees for the phase values in the plot.

    Returns:
        Figure: A matplotlib figure instance if the ``ax`` kwarg is not set

    Raises:
        MissingOptionalLibraryError: Requires matplotlib.
        VisualizationError: if input is not a valid N-qubit state.

        QiskitError: Input statevector does not have valid dimensions.

    Example:
        .. jupyter-execute::

           from qiskit import QuantumCircuit
           from qiskit.quantum_info import Statevector
           from qiskit.visualization import plot_state_qsphere
           %matplotlib inline

           qc = QuantumCircuit(2)
           qc.h(0)
           qc.cx(0, 1)

           state = Statevector.from_instruction(qc)
           plot_state_qsphere(state)
    """
    if not HAS_MATPLOTLIB:
        raise MissingOptionalLibraryError(
            libname="Matplotlib",
            name="plot_state_qsphere",
            pip_install="pip install matplotlib",
        )

    import matplotlib.gridspec as gridspec
    from matplotlib import pyplot as plt
    from matplotlib.patches import Circle
    from qiskit.visualization.bloch import Arrow3D

    try:
        import seaborn as sns
    except ImportError as ex:
        raise MissingOptionalLibraryError(
            libname="seaborn",
            name="plot_state_qsphere",
            pip_install="pip install seaborn",
        ) from ex
    rho = DensityMatrix(state)
    num = rho.num_qubits
    if num is None:
        raise VisualizationError("Input is not a multi-qubit quantum state.")
    # get the eigenvectors and eigenvalues
    eigvals, eigvecs = linalg.eigh(rho.data)

    if figsize is None:
        figsize = (7, 7)

    if ax is None:
        return_fig = True
        fig = plt.figure(figsize=figsize)
    else:
        return_fig = False
        fig = ax.get_figure()

    gs = gridspec.GridSpec(nrows=3, ncols=3)

    ax = fig.add_subplot(gs[0:3, 0:3], projection="3d")
    ax.axes.set_xlim3d(-1.0, 1.0)
    ax.axes.set_ylim3d(-1.0, 1.0)
    ax.axes.set_zlim3d(-1.0, 1.0)
    ax.axes.grid(False)
    ax.view_init(elev=5, azim=275)

    # Force aspect ratio
    # MPL 3.2 or previous do not have set_box_aspect
    if hasattr(ax.axes, "set_box_aspect"):
        ax.axes.set_box_aspect((1, 1, 1))

    # start the plotting
    # Plot semi-transparent sphere
    u = np.linspace(0, 2 * np.pi, 25)
    v = np.linspace(0, np.pi, 25)
    x = np.outer(np.cos(u), np.sin(v))
    y = np.outer(np.sin(u), np.sin(v))
    z = np.outer(np.ones(np.size(u)), np.cos(v))
    ax.plot_surface(
        x, y, z, rstride=1, cstride=1, color=plt.rcParams["grid.color"], alpha=0.2, linewidth=0
    )

    # Get rid of the panes
    ax.w_xaxis.set_pane_color((1.0, 1.0, 1.0, 0.0))
    ax.w_yaxis.set_pane_color((1.0, 1.0, 1.0, 0.0))
    ax.w_zaxis.set_pane_color((1.0, 1.0, 1.0, 0.0))

    # Get rid of the spines
    ax.w_xaxis.line.set_color((1.0, 1.0, 1.0, 0.0))
    ax.w_yaxis.line.set_color((1.0, 1.0, 1.0, 0.0))
    ax.w_zaxis.line.set_color((1.0, 1.0, 1.0, 0.0))

    # Get rid of the ticks
    ax.set_xticks([])
    ax.set_yticks([])
    ax.set_zticks([])

    # traversing the eigvals/vecs backward as sorted low->high
    for idx in range(eigvals.shape[0] - 1, -1, -1):
        if eigvals[idx] > 0.001:
            # get the max eigenvalue
            state = eigvecs[:, idx]
            loc = np.absolute(state).argmax()
            # remove the global phase from max element
            angles = (np.angle(state[loc]) + 2 * np.pi) % (2 * np.pi)
            angleset = np.exp(-1j * angles)
            state = angleset * state

            d = num
            for i in range(2 ** num):
                # get x,y,z points
                element = bin(i)[2:].zfill(num)
                weight = element.count("1")
                zvalue = -2 * weight / d + 1
                number_of_divisions = n_choose_k(d, weight)
                weight_order = bit_string_index(element)
                angle = (float(weight) / d) * (np.pi * 2) + (
                    weight_order * 2 * (np.pi / number_of_divisions)
                )

                if (weight > d / 2) or (
                    (weight == d / 2) and (weight_order >= number_of_divisions / 2)
                ):
                    angle = np.pi - angle - (2 * np.pi / number_of_divisions)

                xvalue = np.sqrt(1 - zvalue ** 2) * np.cos(angle)
                yvalue = np.sqrt(1 - zvalue ** 2) * np.sin(angle)

                # get prob and angle - prob will be shade and angle color
                prob = np.real(np.dot(state[i], state[i].conj()))
                prob = min(prob, 1)  # See https://github.com/Qiskit/qiskit-terra/issues/4666
                colorstate = phase_to_rgb(state[i])

                alfa = 1
                if yvalue >= 0.1:
                    alfa = 1.0 - yvalue

                if not np.isclose(prob, 0) and show_state_labels:
                    rprime = 1.3
                    angle_theta = np.arctan2(np.sqrt(1 - zvalue ** 2), zvalue)
                    xvalue_text = rprime * np.sin(angle_theta) * np.cos(angle)
                    yvalue_text = rprime * np.sin(angle_theta) * np.sin(angle)
                    zvalue_text = rprime * np.cos(angle_theta)
                    element_text = "$\\vert" + element + "\\rangle$"
                    if show_state_phases:
                        element_angle = (np.angle(state[i]) + (np.pi * 4)) % (np.pi * 2)
                        if use_degrees:
                            element_text += "\n$%.1f^\\circ$" % (element_angle * 180 / np.pi)
                        else:
                            element_angle = pi_check(element_angle, ndigits=3).replace("pi", "\\pi")
                            element_text += "\n$%s$" % (element_angle)
                    ax.text(
                        xvalue_text,
                        yvalue_text,
                        zvalue_text,
                        element_text,
                        ha="center",
                        va="center",
                        size=12,
                    )

                ax.plot(
                    [xvalue],
                    [yvalue],
                    [zvalue],
                    markerfacecolor=colorstate,
                    markeredgecolor=colorstate,
                    marker="o",
                    markersize=np.sqrt(prob) * 30,
                    alpha=alfa,
                )

                a = Arrow3D(
                    [0, xvalue],
                    [0, yvalue],
                    [0, zvalue],
                    mutation_scale=20,
                    alpha=prob,
                    arrowstyle="-",
                    color=colorstate,
                    lw=2,
                )
                ax.add_artist(a)

            # add weight lines
            for weight in range(d + 1):
                theta = np.linspace(-2 * np.pi, 2 * np.pi, 100)
                z = -2 * weight / d + 1
                r = np.sqrt(1 - z ** 2)
                x = r * np.cos(theta)
                y = r * np.sin(theta)
                ax.plot(x, y, z, color=(0.5, 0.5, 0.5), lw=1, ls=":", alpha=0.5)

            # add center point
            ax.plot(
                [0],
                [0],
                [0],
                markerfacecolor=(0.5, 0.5, 0.5),
                markeredgecolor=(0.5, 0.5, 0.5),
                marker="o",
                markersize=3,
                alpha=1,
            )
        else:
            break

    n = 64
    theta = np.ones(n)
    colors = sns.hls_palette(n)

    ax2 = fig.add_subplot(gs[2:, 2:])
    ax2.pie(theta, colors=colors[5 * n // 8 :] + colors[: 5 * n // 8], radius=0.75)
    ax2.add_artist(Circle((0, 0), 0.5, color="white", zorder=1))
    offset = 0.95  # since radius of sphere is one.

    if use_degrees:
        labels = ["Phase\n(Deg)", "0", "90", "180   ", "270"]
    else:
        labels = ["Phase", "$0$", "$\\pi/2$", "$\\pi$", "$3\\pi/2$"]

    ax2.text(0, 0, labels[0], horizontalalignment="center", verticalalignment="center", fontsize=14)
    ax2.text(
        offset, 0, labels[1], horizontalalignment="center", verticalalignment="center", fontsize=14
    )
    ax2.text(
        0, offset, labels[2], horizontalalignment="center", verticalalignment="center", fontsize=14
    )
    ax2.text(
        -offset, 0, labels[3], horizontalalignment="center", verticalalignment="center", fontsize=14
    )
    ax2.text(
        0, -offset, labels[4], horizontalalignment="center", verticalalignment="center", fontsize=14
    )

    if return_fig:
        matplotlib_close_if_inline(fig)
    if filename is None:
        return fig
    else:
        return fig.savefig(filename)
def plot_state_paulivec(
    state, title="", figsize=None, color=None, ax=None, *, rho=None, filename=None
):
    """Plot the paulivec representation of a quantum state.

    Plot a bargraph of the mixed state rho over the pauli matrices

    Args:
        state (Statevector or DensityMatrix or ndarray): an N-qubit quantum state.
        title (str): a string that represents the plot title
        figsize (tuple): Figure size in inches.
        color (list or str): Color of the expectation value bars.
        ax (matplotlib.axes.Axes): An optional Axes object to be used for
            the visualization output. If none is specified a new matplotlib
            Figure will be created and used. Additionally, if specified there
            will be no returned Figure since it is redundant.

    Returns:
         matplotlib.Figure:
            The matplotlib.Figure of the visualization if the
            ``ax`` kwarg is not set

    Raises:
        MissingOptionalLibraryError: Requires matplotlib.
        VisualizationError: if input is not a valid N-qubit state.

    Example:
        .. jupyter-execute::

           from qiskit import QuantumCircuit
           from qiskit.quantum_info import Statevector
           from qiskit.visualization import plot_state_paulivec
           %matplotlib inline

           qc = QuantumCircuit(2)
           qc.h(0)
           qc.cx(0, 1)

           state = Statevector.from_instruction(qc)
           plot_state_paulivec(state, color='midnightblue',
                title="New PauliVec plot")
    """
    if not HAS_MATPLOTLIB:
        raise MissingOptionalLibraryError(
            libname="Matplotlib",
            name="plot_state_paulivec",
            pip_install="pip install matplotlib",
        )
    from matplotlib import pyplot as plt

    labels, values = _paulivec_data(state)
    numelem = len(values)

    if figsize is None:
        figsize = (7, 5)
    if color is None:
        color = "#648fff"

    ind = np.arange(numelem)  # the x locations for the groups
    width = 0.5  # the width of the bars
    if ax is None:
        return_fig = True
        fig, ax = plt.subplots(figsize=figsize)
    else:
        return_fig = False
        fig = ax.get_figure()
    ax.grid(zorder=0, linewidth=1, linestyle="--")
    ax.bar(ind, values, width, color=color, zorder=2)
    ax.axhline(linewidth=1, color="k")
    # add some text for labels, title, and axes ticks
    ax.set_ylabel("Expectation value", fontsize=14)
    ax.set_xticks(ind)
    ax.set_yticks([-1, -0.5, 0, 0.5, 1])
    ax.set_xticklabels(labels, fontsize=14, rotation=70)
    ax.set_xlabel("Pauli", fontsize=14)
    ax.set_ylim([-1, 1])
    ax.set_facecolor("#eeeeee")
    for tick in ax.xaxis.get_major_ticks() + ax.yaxis.get_major_ticks():
        tick.label.set_fontsize(14)
    ax.set_title(title, fontsize=16)
    if return_fig:
        matplotlib_close_if_inline(fig)
    if filename is None:
        return fig
    else:
        return fig.savefig(filename)
def plot_state_hinton(
    state, title="", figsize=None, ax_real=None, ax_imag=None, *, rho=None, filename=None
):
    """Plot a hinton diagram for the density matrix of a quantum state.

    Args:
        state (Statevector or DensityMatrix or ndarray): An N-qubit quantum state.
        title (str): a string that represents the plot title
        figsize (tuple): Figure size in inches.
        filename (str): file path to save image to.
        ax_real (matplotlib.axes.Axes): An optional Axes object to be used for
            the visualization output. If none is specified a new matplotlib
            Figure will be created and used. If this is specified without an
            ax_imag only the real component plot will be generated.
            Additionally, if specified there will be no returned Figure since
            it is redundant.
        ax_imag (matplotlib.axes.Axes): An optional Axes object to be used for
            the visualization output. If none is specified a new matplotlib
            Figure will be created and used. If this is specified without an
            ax_imag only the real component plot will be generated.
            Additionally, if specified there will be no returned Figure since
            it is redundant.

    Returns:
         matplotlib.Figure:
            The matplotlib.Figure of the visualization if
            neither ax_real or ax_imag is set.

    Raises:
        MissingOptionalLibraryError: Requires matplotlib.
        VisualizationError: if input is not a valid N-qubit state.

    Example:
        .. jupyter-execute::

            from qiskit import QuantumCircuit
            from qiskit.quantum_info import DensityMatrix
            from qiskit.visualization import plot_state_hinton
            %matplotlib inline

            qc = QuantumCircuit(2)
            qc.h(0)
            qc.cx(0, 1)

            state = DensityMatrix.from_instruction(qc)
            plot_state_hinton(state, title="New Hinton Plot")
    """
    if not HAS_MATPLOTLIB:
        raise MissingOptionalLibraryError(
            libname="Matplotlib",
            name="plot_state_hinton",
            pip_install="pip install matplotlib",
        )
    from matplotlib import pyplot as plt

    # Figure data
    rho = DensityMatrix(state)
    num = rho.num_qubits
    if num is None:
        raise VisualizationError("Input is not a multi-qubit quantum state.")
    max_weight = 2 ** np.ceil(np.log(np.abs(rho.data).max()) / np.log(2))
    datareal = np.real(rho.data)
    dataimag = np.imag(rho.data)

    if figsize is None:
        figsize = (8, 5)
    if not ax_real and not ax_imag:
        fig, (ax1, ax2) = plt.subplots(1, 2, figsize=figsize)
    else:
        if ax_real:
            fig = ax_real.get_figure()
        else:
            fig = ax_imag.get_figure()
        ax1 = ax_real
        ax2 = ax_imag
    column_names = [bin(i)[2:].zfill(num) for i in range(2 ** num)]
    row_names = [bin(i)[2:].zfill(num) for i in range(2 ** num)]
    ly, lx = datareal.shape
    # Real
    if ax1:
        ax1.patch.set_facecolor("gray")
        ax1.set_aspect("equal", "box")
        ax1.xaxis.set_major_locator(plt.NullLocator())
        ax1.yaxis.set_major_locator(plt.NullLocator())

        for (x, y), w in np.ndenumerate(datareal):
            color = "white" if w > 0 else "black"
            size = np.sqrt(np.abs(w) / max_weight)
            rect = plt.Rectangle(
                [0.5 + x - size / 2, 0.5 + y - size / 2],
                size,
                size,
                facecolor=color,
                edgecolor=color,
            )
            ax1.add_patch(rect)

        ax1.set_xticks(0.5 + np.arange(lx))
        ax1.set_yticks(0.5 + np.arange(ly))
        ax1.set_xlim([0, lx])
        ax1.set_ylim([ly, 0])
        ax1.set_yticklabels(row_names, fontsize=14)
        ax1.set_xticklabels(column_names, fontsize=14, rotation=90)
        ax1.invert_yaxis()
        ax1.set_title("Re[$\\rho$]", fontsize=14)
    # Imaginary
    if ax2:
        ax2.patch.set_facecolor("gray")
        ax2.set_aspect("equal", "box")
        ax2.xaxis.set_major_locator(plt.NullLocator())
        ax2.yaxis.set_major_locator(plt.NullLocator())

        for (x, y), w in np.ndenumerate(dataimag):
            color = "white" if w > 0 else "black"
            size = np.sqrt(np.abs(w) / max_weight)
            rect = plt.Rectangle(
                [0.5 + x - size / 2, 0.5 + y - size / 2],
                size,
                size,
                facecolor=color,
                edgecolor=color,
            )
            ax2.add_patch(rect)

        ax2.set_xticks(0.5 + np.arange(lx))
        ax2.set_yticks(0.5 + np.arange(ly))
        ax1.set_xlim([0, lx])
        ax1.set_ylim([ly, 0])
        ax2.set_yticklabels(row_names, fontsize=14)
        ax2.set_xticklabels(column_names, fontsize=14, rotation=90)
        ax2.invert_yaxis()
        ax2.set_title("Im[$\\rho$]", fontsize=14)
    if title:
        fig.suptitle(title, fontsize=16)
    if ax_real is None and ax_imag is None:
        matplotlib_close_if_inline(fig)
    if filename is None:
        return fig
    else:
        return fig.savefig(filename)
def plot_state_city(
    state,
    title="",
    figsize=None,
    color=None,
    alpha=1,
    ax_real=None,
    ax_imag=None,
    *,
    rho=None,
    filename=None,
):
    """Plot the cityscape of quantum state.

    Plot two 3d bar graphs (two dimensional) of the real and imaginary
    part of the density matrix rho.

    Args:
        state (Statevector or DensityMatrix or ndarray): an N-qubit quantum state.
        title (str): a string that represents the plot title
        figsize (tuple): Figure size in inches.
        color (list): A list of len=2 giving colors for real and
            imaginary components of matrix elements.
        alpha (float): Transparency value for bars
        ax_real (matplotlib.axes.Axes): An optional Axes object to be used for
            the visualization output. If none is specified a new matplotlib
            Figure will be created and used. If this is specified without an
            ax_imag only the real component plot will be generated.
            Additionally, if specified there will be no returned Figure since
            it is redundant.
        ax_imag (matplotlib.axes.Axes): An optional Axes object to be used for
            the visualization output. If none is specified a new matplotlib
            Figure will be created and used. If this is specified without an
            ax_real only the imaginary component plot will be generated.
            Additionally, if specified there will be no returned Figure since
            it is redundant.

    Returns:
         matplotlib.Figure:
            The matplotlib.Figure of the visualization if the
            ``ax_real`` and ``ax_imag`` kwargs are not set

    Raises:
        MissingOptionalLibraryError: Requires matplotlib.
        ValueError: When 'color' is not a list of len=2.
        VisualizationError: if input is not a valid N-qubit state.

    Example:
        .. jupyter-execute::

           from qiskit import QuantumCircuit
           from qiskit.quantum_info import DensityMatrix
           from qiskit.visualization import plot_state_city
           %matplotlib inline

           qc = QuantumCircuit(2)
           qc.h(0)
           qc.cx(0, 1)

           state = DensityMatrix.from_instruction(qc)
           plot_state_city(state, color=['midnightblue', 'midnightblue'],
                title="New State City")
    """
    if not HAS_MATPLOTLIB:
        raise MissingOptionalLibraryError(
            libname="Matplotlib",
            name="plot_state_city",
            pip_install="pip install matplotlib",
        )
    from matplotlib import pyplot as plt
    from mpl_toolkits.mplot3d.art3d import Poly3DCollection

    rho = DensityMatrix(state)
    num = rho.num_qubits
    if num is None:
        raise VisualizationError("Input is not a multi-qubit quantum state.")

    # get the real and imag parts of rho
    datareal = np.real(rho.data)
    dataimag = np.imag(rho.data)

    # get the labels
    column_names = [bin(i)[2:].zfill(num) for i in range(2 ** num)]
    row_names = [bin(i)[2:].zfill(num) for i in range(2 ** num)]

    lx = len(datareal[0])  # Work out matrix dimensions
    ly = len(datareal[:, 0])
    xpos = np.arange(0, lx, 1)  # Set up a mesh of positions
    ypos = np.arange(0, ly, 1)
    xpos, ypos = np.meshgrid(xpos + 0.25, ypos + 0.25)

    xpos = xpos.flatten()
    ypos = ypos.flatten()
    zpos = np.zeros(lx * ly)

    dx = 0.5 * np.ones_like(zpos)  # width of bars
    dy = dx.copy()
    dzr = datareal.flatten()
    dzi = dataimag.flatten()

    if color is None:
        color = ["#648fff", "#648fff"]
    else:
        if len(color) != 2:
            raise ValueError("'color' must be a list of len=2.")
        if color[0] is None:
            color[0] = "#648fff"
        if color[1] is None:
            color[1] = "#648fff"
    if ax_real is None and ax_imag is None:
        # set default figure size
        if figsize is None:
            figsize = (15, 5)

        fig = plt.figure(figsize=figsize)
        ax1 = fig.add_subplot(1, 2, 1, projection="3d")
        ax2 = fig.add_subplot(1, 2, 2, projection="3d")
    elif ax_real is not None:
        fig = ax_real.get_figure()
        ax1 = ax_real
        ax2 = ax_imag
    else:
        fig = ax_imag.get_figure()
        ax1 = None
        ax2 = ax_imag

    max_dzr = max(dzr)
    min_dzr = min(dzr)
    min_dzi = np.min(dzi)
    max_dzi = np.max(dzi)

    if ax1 is not None:
        fc1 = generate_facecolors(xpos, ypos, zpos, dx, dy, dzr, color[0])
        for idx, cur_zpos in enumerate(zpos):
            if dzr[idx] > 0:
                zorder = 2
            else:
                zorder = 0
            b1 = ax1.bar3d(
                xpos[idx],
                ypos[idx],
                cur_zpos,
                dx[idx],
                dy[idx],
                dzr[idx],
                alpha=alpha,
                zorder=zorder,
            )
            b1.set_facecolors(fc1[6 * idx : 6 * idx + 6])

        xlim, ylim = ax1.get_xlim(), ax1.get_ylim()
        x = [xlim[0], xlim[1], xlim[1], xlim[0]]
        y = [ylim[0], ylim[0], ylim[1], ylim[1]]
        z = [0, 0, 0, 0]
        verts = [list(zip(x, y, z))]

        pc1 = Poly3DCollection(verts, alpha=0.15, facecolor="k", linewidths=1, zorder=1)

        if min(dzr) < 0 < max(dzr):
            ax1.add_collection3d(pc1)
        ax1.set_xticks(np.arange(0.5, lx + 0.5, 1))
        ax1.set_yticks(np.arange(0.5, ly + 0.5, 1))
        if max_dzr != min_dzr:
            ax1.axes.set_zlim3d(np.min(dzr), max(np.max(dzr) + 1e-9, max_dzi))
        else:
            if min_dzr == 0:
                ax1.axes.set_zlim3d(np.min(dzr), max(np.max(dzr) + 1e-9, np.max(dzi)))
            else:
                ax1.axes.set_zlim3d(auto=True)
        ax1.get_autoscalez_on()
        ax1.w_xaxis.set_ticklabels(row_names, fontsize=14, rotation=45, ha="right", va="top")
        ax1.w_yaxis.set_ticklabels(
            column_names, fontsize=14, rotation=-22.5, ha="left", va="center"
        )
        ax1.set_zlabel("Re[$\\rho$]", fontsize=14)
        for tick in ax1.zaxis.get_major_ticks():
            tick.label.set_fontsize(14)

    if ax2 is not None:
        fc2 = generate_facecolors(xpos, ypos, zpos, dx, dy, dzi, color[1])
        for idx, cur_zpos in enumerate(zpos):
            if dzi[idx] > 0:
                zorder = 2
            else:
                zorder = 0
            b2 = ax2.bar3d(
                xpos[idx],
                ypos[idx],
                cur_zpos,
                dx[idx],
                dy[idx],
                dzi[idx],
                alpha=alpha,
                zorder=zorder,
            )
            b2.set_facecolors(fc2[6 * idx : 6 * idx + 6])

        xlim, ylim = ax2.get_xlim(), ax2.get_ylim()
        x = [xlim[0], xlim[1], xlim[1], xlim[0]]
        y = [ylim[0], ylim[0], ylim[1], ylim[1]]
        z = [0, 0, 0, 0]
        verts = [list(zip(x, y, z))]

        pc2 = Poly3DCollection(verts, alpha=0.2, facecolor="k", linewidths=1, zorder=1)

        if min(dzi) < 0 < max(dzi):
            ax2.add_collection3d(pc2)
        ax2.set_xticks(np.arange(0.5, lx + 0.5, 1))
        ax2.set_yticks(np.arange(0.5, ly + 0.5, 1))
        if min_dzi != max_dzi:
            eps = 0
            ax2.axes.set_zlim3d(np.min(dzi), max(np.max(dzr) + 1e-9, np.max(dzi) + eps))
        else:
            if min_dzi == 0:
                ax2.set_zticks([0])
                eps = 1e-9
                ax2.axes.set_zlim3d(np.min(dzi), max(np.max(dzr) + 1e-9, np.max(dzi) + eps))
            else:
                ax2.axes.set_zlim3d(auto=True)

        ax2.w_xaxis.set_ticklabels(row_names, fontsize=14, rotation=45, ha="right", va="top")
        ax2.w_yaxis.set_ticklabels(
            column_names, fontsize=14, rotation=-22.5, ha="left", va="center"
        )
        ax2.set_zlabel("Im[$\\rho$]", fontsize=14)
        for tick in ax2.zaxis.get_major_ticks():
            tick.label.set_fontsize(14)
        ax2.get_autoscalez_on()

    fig.suptitle(title, fontsize=16)
    if ax_real is None and ax_imag is None:
        matplotlib_close_if_inline(fig)
    if filename is None:
        return fig
    else:
        return fig.savefig(filename)
def plot_bloch_multivector(
    state, title="", figsize=None, *, rho=None, reverse_bits=False, filename=None
):
    """Plot the Bloch sphere.

    Plot a sphere, axes, the Bloch vector, and its projections onto each axis.

    Args:
        state (Statevector or DensityMatrix or ndarray): an N-qubit quantum state.
        title (str): a string that represents the plot title
        figsize (tuple): Has no effect, here for compatibility only.
        reverse_bits (bool): If True, plots qubits following Qiskit's convention [Default:False].

    Returns:
        matplotlib.Figure:
            A matplotlib figure instance.

    Raises:
        MissingOptionalLibraryError: Requires matplotlib.
        VisualizationError: if input is not a valid N-qubit state.

    Example:
        .. jupyter-execute::

            from qiskit import QuantumCircuit
            from qiskit.quantum_info import Statevector
            from qiskit.visualization import plot_bloch_multivector
            %matplotlib inline

            qc = QuantumCircuit(2)
            qc.h(0)
            qc.cx(0, 1)

            state = Statevector.from_instruction(qc)
            plot_bloch_multivector(state, title="New Bloch Multivector", reverse_bits=False)
    """
    if not HAS_MATPLOTLIB:
        raise MissingOptionalLibraryError(
            libname="Matplotlib",
            name="plot_bloch_multivector",
            pip_install="pip install matplotlib",
        )
    from matplotlib import pyplot as plt

    # Data
    bloch_data = (
        _bloch_multivector_data(state)[::-1] if reverse_bits else _bloch_multivector_data(state)
    )
    num = len(bloch_data)
    width, height = plt.figaspect(1 / num)
    fig = plt.figure(figsize=(width, height))
    for i in range(num):
        pos = num - 1 - i if reverse_bits else i
        ax = fig.add_subplot(1, num, i + 1, projection="3d")
        plot_bloch_vector(bloch_data[i], "qubit " + str(pos), ax=ax, figsize=figsize)
    fig.suptitle(title, fontsize=16, y=1.01)
    matplotlib_close_if_inline(fig)
    if filename is None:
        return fig
    else:
        return fig.savefig(filename)
def pulse_drawer(
    data: Union[Waveform, Union[Schedule, Instruction]],
    dt: int = 1,
    style: Union[PulseStyle, SchedStyle] = None,
    filename: str = None,
    interp_method: Callable = None,
    scale: float = None,
    channel_scales: Dict[Channel, float] = None,
    plot_all: bool = False,
    plot_range: Tuple[float, float] = None,
    interactive: bool = False,
    table: bool = False,
    label: bool = False,
    framechange: bool = True,
    channels: List[Channel] = None,
    show_framechange_channels: bool = True,
    draw_title: bool = False,
):
    """Deprecated.

    Plot the interpolated envelope of pulse and schedule.

    Args:
        data: Pulse or schedule object to plot.
        dt: Time interval of samples. Pulses are visualized in the unit of
            cycle time if not provided.
        style: A style sheet to configure plot appearance.
            See :mod:`~qiskit.visualization.pulse.qcstyle` for more information.
        filename: Name required to save pulse image. The drawer just returns
            `matplot.Figure` object if not provided.
        interp_method: Interpolation function. Interpolation is disabled in default.
            See :mod:`~qiskit.visualization.pulse.interpolation` for more information.
        scale: Scaling of waveform amplitude. Pulses are automatically
            scaled channel by channel if not provided.
        channel_scales: Dictionary of scale factor for specific channels.
            Scale of channels not specified here is overwritten by `scale`.
        plot_all: When set `True` plot empty channels.
        plot_range: A tuple of time range to plot.
        interactive: When set `True` show the circuit in a new window.
            This depends on the matplotlib backend being used supporting this.
        table: When set `True` draw event table for supported commands.
        label: When set `True` draw label for individual instructions.
        framechange: When set `True` draw framechange indicators.
        channels: A list of channel names to plot.
            All non-empty channels are shown if not provided.
        show_framechange_channels: When set `True` plot channels
            with only framechange instructions.
        draw_title: Add a title to the plot when set to ``True``.

    Returns:
        matplotlib.figure.Figure: A matplotlib figure object for the pulse envelope.

    Example:
        This example shows how to visualize your pulse schedule.
        Pulse names are added to the plot, unimportant channels are removed
        and the time window is truncated to draw out U3 pulse sequence of interest.

        .. jupyter-execute::

            import numpy as np
            import qiskit
            from qiskit import pulse
            from qiskit.providers.fake_provider import FakeAlmaden

            inst_map = FakeAlmaden().defaults().instruction_schedule_map

            sched = pulse.Schedule()
            sched += inst_map.get('u3', 0, np.pi, 0, np.pi)
            sched += inst_map.get('measure', list(range(20))) << sched.duration

            channels = [pulse.DriveChannel(0), pulse.MeasureChannel(0)]
            scales = {pulse.DriveChannel(0): 10}

            qiskit.visualization.pulse_drawer(sched,
                                              channels=channels,
                                              plot_range=(0, 1000),
                                              label=True,
                                              channel_scales=scales)

        You are also able to call visualization module from the instance method::

            sched.draw(channels=channels, plot_range=(0, 1000), label=True, channel_scales=scales)

        To customize the format of the schedule plot, you can setup your style sheet.

        .. jupyter-execute::

            import numpy as np
            import qiskit
            from qiskit import pulse
            from qiskit.providers.fake_provider import FakeAlmaden

            inst_map = FakeAlmaden().defaults().instruction_schedule_map

            sched = pulse.Schedule()
            sched += inst_map.get('u3', 0, np.pi, 0, np.pi)
            sched += inst_map.get('measure', list(range(20))) << sched.duration

            # setup style sheet
            my_style = qiskit.visualization.SchedStyle(
                figsize = (10, 5),
                bg_color='w',
                d_ch_color = ['#32cd32', '#556b2f'])

            channels = [pulse.DriveChannel(0), pulse.MeasureChannel(0)]
            scales = {pulse.DriveChannel(0): 10}

            qiskit.visualization.pulse_drawer(sched, style=my_style,
                                              channels=channels,
                                              plot_range=(0, 1000),
                                              label=True,
                                              channel_scales=scales)

    Raises:
        VisualizationError: when invalid data is given
        MissingOptionalLibraryError: when matplotlib is not installed
    """
    warnings.warn(
        "This legacy pulse drawer is deprecated and will be removed no earlier than "
        "3 months after the release date. Use `qiskit.visualization.pulse_drawer_v2` "
        "instead. After the legacy drawer is removed, the import path of this module "
        "will be dedicated to the v2 drawer. "
        "New drawer will provide much more flexibility with richer stylesheets "
        "and cleaner visualization.",
        DeprecationWarning,
    )

    if isinstance(data, Waveform):
        drawer = _matplotlib.WaveformDrawer(style=style)
        image = drawer.draw(data,
                            dt=dt,
                            interp_method=interp_method,
                            scale=scale)
    elif isinstance(data, (Schedule, Instruction)):
        drawer = _matplotlib.ScheduleDrawer(style=style)
        image = drawer.draw(
            data,
            dt=dt,
            interp_method=interp_method,
            scale=scale,
            channel_scales=channel_scales,
            plot_range=plot_range,
            plot_all=plot_all,
            table=table,
            label=label,
            framechange=framechange,
            channels=channels,
            show_framechange_channels=show_framechange_channels,
            draw_title=draw_title,
        )
    else:
        raise VisualizationError("This data cannot be visualized.")

    if filename:
        image.savefig(filename, dpi=drawer.style.dpi, bbox_inches="tight")

    matplotlib_close_if_inline(image)
    if image and interactive:
        image.show()
    return image