Exemplo n.º 1
0
    def test_vqe_2_iqpe(self):
        backend = get_aer_backend('qasm_simulator')
        num_qbits = self.algo_input.qubit_op.num_qubits
        var_form = RYRZ(num_qbits, 3)
        optimizer = SPSA(max_trials=10)
        # optimizer.set_options(**{'max_trials': 500})
        algo = VQE(self.algo_input.qubit_op, var_form, optimizer, 'paulis')
        quantum_instance = QuantumInstance(backend)
        result = algo.run(quantum_instance)

        self.log.debug('VQE result: {}.'.format(result))

        self.ref_eigenval = -1.85727503

        num_time_slices = 50
        num_iterations = 11

        state_in = VarFormBased(var_form, result['opt_params'])
        iqpe = IQPE(self.algo_input.qubit_op,
                    state_in,
                    num_time_slices,
                    num_iterations,
                    paulis_grouping='random',
                    expansion_mode='suzuki',
                    expansion_order=2,
                    shallow_circuit_concat=True)
        quantum_instance = QuantumInstance(backend,
                                           shots=100,
                                           pass_manager=PassManager(),
                                           seed=self.random_seed,
                                           seed_mapper=self.random_seed)
        result = iqpe.run(quantum_instance)

        self.log.debug('top result str label:         {}'.format(
            result['top_measurement_label']))
        self.log.debug('top result in decimal:        {}'.format(
            result['top_measurement_decimal']))
        self.log.debug('stretch:                      {}'.format(
            result['stretch']))
        self.log.debug('translation:                  {}'.format(
            result['translation']))
        self.log.debug('final eigenvalue from QPE:    {}'.format(
            result['energy']))
        self.log.debug('reference eigenvalue:         {}'.format(
            self.ref_eigenval))
        self.log.debug('ref eigenvalue (transformed): {}'.format(
            (self.ref_eigenval + result['translation']) * result['stretch']))
        self.log.debug('reference binary str label:   {}'.format(
            decimal_to_binary((self.ref_eigenval + result['translation']) *
                              result['stretch'],
                              max_num_digits=num_iterations + 3,
                              fractional_part_only=True)))

        np.testing.assert_approx_equal(self.ref_eigenval,
                                       result['energy'],
                                       significant=2)
Exemplo n.º 2
0
    def test_iqpe(self, qubitOp):
        self.algorithm = 'IQPE'
        self.log.debug('Testing IQPE')

        self.qubitOp = qubitOp

        exact_eigensolver = ExactEigensolver(self.qubitOp, k=1)
        results = exact_eigensolver.run()

        w = results['eigvals']
        v = results['eigvecs']

        self.qubitOp.to_matrix()
        np.testing.assert_almost_equal(
            self.qubitOp.matrix @ v[0],
            w[0] * v[0]
        )
        np.testing.assert_almost_equal(
            expm(-1.j * sparse.csc_matrix(self.qubitOp.matrix)) @ v[0],
            np.exp(-1.j * w[0]) * v[0]
        )

        self.ref_eigenval = w[0]
        self.ref_eigenvec = v[0]
        self.log.debug('The exact eigenvalue is:       {}'.format(self.ref_eigenval))
        self.log.debug('The corresponding eigenvector: {}'.format(self.ref_eigenvec))

        num_time_slices = 50
        num_iterations = 12
        state_in = Custom(self.qubitOp.num_qubits, state_vector=self.ref_eigenvec)
        iqpe = IQPE(self.qubitOp, state_in, num_time_slices, num_iterations,
                    paulis_grouping='random', expansion_mode='suzuki', expansion_order=2, shallow_circuit_concat=True)

        backend = get_aer_backend('qasm_simulator')
        quantum_instance = QuantumInstance(backend, shots=100, pass_manager=PassManager())

        result = iqpe.run(quantum_instance)

        self.log.debug('top result str label:         {}'.format(result['top_measurement_label']))
        self.log.debug('top result in decimal:        {}'.format(result['top_measurement_decimal']))
        self.log.debug('stretch:                      {}'.format(result['stretch']))
        self.log.debug('translation:                  {}'.format(result['translation']))
        self.log.debug('final eigenvalue from IQPE:   {}'.format(result['energy']))
        self.log.debug('reference eigenvalue:         {}'.format(self.ref_eigenval))
        self.log.debug('ref eigenvalue (transformed): {}'.format(
            (self.ref_eigenval + result['translation']) * result['stretch'])
        )
        self.log.debug('reference binary str label:   {}'.format(decimal_to_binary(
            (self.ref_eigenval.real + result['translation']) * result['stretch'],
            max_num_digits=num_iterations + 3,
            fractional_part_only=True
        )))

        np.testing.assert_approx_equal(result['energy'], self.ref_eigenval.real, significant=2)
Exemplo n.º 3
0
    def test_iqpe(self, distance):
        self.algorithm = 'IQPE'
        self.log.debug('Testing End-to-End with IQPE on H2 with '
                       'inter-atomic distance {}.'.format(distance))
        try:
            driver = PySCFDriver(atom='H .0 .0 .0; H .0 .0 {}'.format(distance),
                                 unit=UnitsType.ANGSTROM,
                                 charge=0,
                                 spin=0,
                                 basis='sto3g')
        except QiskitChemistryError:
            self.skipTest('PYSCF driver does not appear to be installed')
        self.molecule = driver.run()
        qubit_mapping = 'parity'
        fer_op = FermionicOperator(h1=self.molecule.one_body_integrals, h2=self.molecule.two_body_integrals)
        self.qubit_op = fer_op.mapping(map_type=qubit_mapping, threshold=1e-10).two_qubit_reduced_operator(2)

        exact_eigensolver = ExactEigensolver(self.qubit_op, k=1)
        results = exact_eigensolver.run()
        self.reference_energy = results['energy']
        self.log.debug('The exact ground state energy is: {}'.format(results['energy']))

        num_particles = self.molecule.num_alpha + self.molecule.num_beta
        two_qubit_reduction = True
        num_orbitals = self.qubit_op.num_qubits + (2 if two_qubit_reduction else 0)

        num_time_slices = 50
        num_iterations = 12
        state_in = HartreeFock(self.qubit_op.num_qubits, num_orbitals,
                               num_particles, qubit_mapping, two_qubit_reduction)
        iqpe = IQPE(self.qubit_op, state_in, num_time_slices, num_iterations,
                    paulis_grouping='random', expansion_mode='suzuki', expansion_order=2,
                    shallow_circuit_concat=True)
        backend = qiskit.Aer.get_backend('qasm_simulator')
        quantum_instance = QuantumInstance(backend, shots=100, pass_manager=PassManager())

        result = iqpe.run(quantum_instance)

        self.log.debug('top result str label:     {}'.format(result['top_measurement_label']))
        self.log.debug('top result in decimal:    {}'.format(result['top_measurement_decimal']))
        self.log.debug('stretch:                  {}'.format(result['stretch']))
        self.log.debug('translation:              {}'.format(result['translation']))
        self.log.debug('final energy from QPE:    {}'.format(result['energy']))
        self.log.debug('reference energy:         {}'.format(self.reference_energy))
        self.log.debug('ref energy (transformed): {}'.format(
            (self.reference_energy + result['translation']) * result['stretch'])
        )
        self.log.debug('ref binary str label:     {}'.format(decimal_to_binary(
            (self.reference_energy + result['translation']) * result['stretch'],
            max_num_digits=num_iterations + 3,
            fractional_part_only=True
        )))

        np.testing.assert_approx_equal(result['energy'], self.reference_energy, significant=2)
Exemplo n.º 4
0
    def test_qpe(self, qubitOp):
        self.algorithm = 'QPE'
        self.log.debug('Testing QPE')

        self.qubitOp = qubitOp

        exact_eigensolver = get_algorithm_instance('ExactEigensolver')
        exact_eigensolver.init_args(self.qubitOp, k=1)
        results = exact_eigensolver.run()

        w = results['eigvals']
        v = results['eigvecs']

        self.qubitOp._check_representation('matrix')
        np.testing.assert_almost_equal(self.qubitOp.matrix @ v[0], w[0] * v[0])
        np.testing.assert_almost_equal(
            expm(-1.j * self.qubitOp.matrix) @ v[0],
            np.exp(-1.j * w[0]) * v[0])

        self.ref_eigenval = w[0]
        self.ref_eigenvec = v[0]
        self.log.debug('The exact eigenvalue is:       {}'.format(
            self.ref_eigenval))
        self.log.debug('The corresponding eigenvector: {}'.format(
            self.ref_eigenvec))

        num_time_slices = 50
        num_iterations = 12

        iqpe = get_algorithm_instance('IQPE')
        iqpe.setup_quantum_backend(backend='local_qasm_simulator',
                                   shots=100,
                                   skip_transpiler=True)

        state_in = get_initial_state_instance('CUSTOM')
        state_in.init_args(self.qubitOp.num_qubits,
                           state_vector=self.ref_eigenvec)

        iqpe.init_args(
            self.qubitOp,
            state_in,
            num_time_slices,
            num_iterations,
            paulis_grouping='random',
            expansion_mode='suzuki',
            expansion_order=2,
        )

        result = iqpe.run()
        # self.log.debug('operator paulis:\n{}'.format(self.qubitOp.print_operators('paulis')))
        # self.log.debug('qpe circuit:\n\n{}'.format(result['circuit']['complete'].qasm()))

        self.log.debug('top result str label:         {}'.format(
            result['top_measurement_label']))
        self.log.debug('top result in decimal:        {}'.format(
            result['top_measurement_decimal']))
        self.log.debug('stretch:                      {}'.format(
            result['stretch']))
        self.log.debug('translation:                  {}'.format(
            result['translation']))
        self.log.debug('final eigenvalue from QPE:    {}'.format(
            result['energy']))
        self.log.debug('reference eigenvalue:         {}'.format(
            self.ref_eigenval))
        self.log.debug('ref eigenvalue (transformed): {}'.format(
            (self.ref_eigenval + result['translation']) * result['stretch']))
        self.log.debug('reference binary str label:   {}'.format(
            decimal_to_binary((self.ref_eigenval + result['translation']) *
                              result['stretch'],
                              max_num_digits=num_iterations + 3,
                              fractional_part_only=True)))

        np.testing.assert_approx_equal(self.ref_eigenval,
                                       result['energy'],
                                       significant=2)
Exemplo n.º 5
0
    def test_qpe(self, distance):
        self.algorithm = 'QPE'
        self.log.debug(
            'Testing End-to-End with QPE on H2 with inter-atomic distance {}.'.
            format(distance))
        cfg_mgr = ConfigurationManager()
        pyscf_cfg = OrderedDict([('atom',
                                  'H .0 .0 .0; H .0 .0 {}'.format(distance)),
                                 ('unit', 'Angstrom'), ('charge', 0),
                                 ('spin', 0), ('basis', 'sto3g')])
        section = {}
        section['properties'] = pyscf_cfg
        try:
            driver = cfg_mgr.get_driver_instance('PYSCF')
        except ModuleNotFoundError:
            self.skipTest('PYSCF driver does not appear to be installed')

        self.molecule = driver.run(section)

        ferOp = FermionicOperator(h1=self.molecule._one_body_integrals,
                                  h2=self.molecule._two_body_integrals)
        self.qubitOp = ferOp.mapping(
            map_type='PARITY', threshold=1e-10).two_qubit_reduced_operator(2)

        exact_eigensolver = get_algorithm_instance('ExactEigensolver')
        exact_eigensolver.init_args(self.qubitOp, k=1)
        results = exact_eigensolver.run()
        self.reference_energy = results['energy']
        self.log.debug('The exact ground state energy is: {}'.format(
            results['energy']))

        num_particles = self.molecule._num_alpha + self.molecule._num_beta
        two_qubit_reduction = True
        num_orbitals = self.qubitOp.num_qubits + (2 if two_qubit_reduction else
                                                  0)
        qubit_mapping = 'parity'

        num_time_slices = 50
        n_ancillae = 9

        qpe = get_algorithm_instance('QPE')
        qpe.setup_quantum_backend(backend='local_qasm_simulator',
                                  shots=100,
                                  skip_transpiler=True)

        state_in = get_initial_state_instance('HartreeFock')
        state_in.init_args(self.qubitOp.num_qubits, num_orbitals,
                           qubit_mapping, two_qubit_reduction, num_particles)

        iqft = get_iqft_instance('STANDARD')
        iqft.init_args(n_ancillae)

        qpe.init_args(self.qubitOp,
                      state_in,
                      iqft,
                      num_time_slices,
                      n_ancillae,
                      paulis_grouping='random',
                      expansion_mode='suzuki',
                      expansion_order=2)

        result = qpe.run()

        self.log.debug('measurement results:      {}'.format(
            result['measurements']))
        self.log.debug('top result str label:     {}'.format(
            result['top_measurement_label']))
        self.log.debug('top result in decimal:    {}'.format(
            result['top_measurement_decimal']))
        self.log.debug('stretch:                  {}'.format(
            result['stretch']))
        self.log.debug('translation:              {}'.format(
            result['translation']))
        self.log.debug('final energy from QPE:    {}'.format(result['energy']))
        self.log.debug('reference energy:         {}'.format(
            self.reference_energy))
        self.log.debug('ref energy (transformed): {}'.format(
            (self.reference_energy + result['translation']) *
            result['stretch']))
        self.log.debug('ref binary str label:     {}'.format(
            decimal_to_binary((self.reference_energy + result['translation']) *
                              result['stretch'],
                              max_num_digits=n_ancillae + 3,
                              fractional_part_only=True)))

        np.testing.assert_approx_equal(result['energy'],
                                       self.reference_energy,
                                       significant=2)
Exemplo n.º 6
0
    def test_qpe(self, qubitOp, simulator):
        self.algorithm = 'QPE'
        self.log.debug('Testing QPE')

        self.qubitOp = qubitOp

        exact_eigensolver = ExactEigensolver(self.qubitOp, k=1)
        results = exact_eigensolver.run()

        w = results['eigvals']
        v = results['eigvecs']

        self.qubitOp.to_matrix()
        np.testing.assert_almost_equal(self.qubitOp.matrix @ v[0], w[0] * v[0])
        np.testing.assert_almost_equal(
            expm(-1.j * sparse.csc_matrix(self.qubitOp.matrix)) @ v[0],
            np.exp(-1.j * w[0]) * v[0])

        self.ref_eigenval = w[0]
        self.ref_eigenvec = v[0]
        self.log.debug('The exact eigenvalue is:       {}'.format(
            self.ref_eigenval))
        self.log.debug('The corresponding eigenvector: {}'.format(
            self.ref_eigenvec))

        num_time_slices = 50
        n_ancillae = 6

        state_in = Custom(self.qubitOp.num_qubits,
                          state_vector=self.ref_eigenvec)
        iqft = Standard(n_ancillae)

        qpe = QPE(self.qubitOp,
                  state_in,
                  iqft,
                  num_time_slices,
                  n_ancillae,
                  paulis_grouping='random',
                  expansion_mode='suzuki',
                  expansion_order=2,
                  shallow_circuit_concat=True)

        backend = get_aer_backend(simulator)
        run_config = RunConfig(shots=100, max_credits=10, memory=False)
        quantum_instance = QuantumInstance(backend,
                                           run_config,
                                           pass_manager=PassManager())

        # run qpe
        result = qpe.run(quantum_instance)
        # self.log.debug('transformed operator paulis:\n{}'.format(self.qubitOp.print_operators('paulis')))

        # report result
        self.log.debug('top result str label:         {}'.format(
            result['top_measurement_label']))
        self.log.debug('top result in decimal:        {}'.format(
            result['top_measurement_decimal']))
        self.log.debug('stretch:                      {}'.format(
            result['stretch']))
        self.log.debug('translation:                  {}'.format(
            result['translation']))
        self.log.debug('final eigenvalue from QPE:    {}'.format(
            result['energy']))
        self.log.debug('reference eigenvalue:         {}'.format(
            self.ref_eigenval))
        self.log.debug('ref eigenvalue (transformed): {}'.format(
            (self.ref_eigenval + result['translation']) * result['stretch']))
        self.log.debug('reference binary str label:   {}'.format(
            decimal_to_binary(
                (self.ref_eigenval.real + result['translation']) *
                result['stretch'],
                max_num_digits=n_ancillae + 3,
                fractional_part_only=True)))

        np.testing.assert_approx_equal(result['energy'],
                                       self.ref_eigenval.real,
                                       significant=2)
Exemplo n.º 7
0
    def test_vqe_2_iqpe(self):
        num_qbits = self.algo_input.qubit_op.num_qubits
        var_form = get_variational_form_instance('RYRZ')
        var_form.init_args(num_qbits, 3)
        optimizer = get_optimizer_instance('SPSA')
        optimizer.init_args(max_trials=10)
        # optimizer.set_options(**{'max_trials': 500})
        algo = get_algorithm_instance('VQE')
        algo.setup_quantum_backend(backend='qasm_simulator')
        algo.init_args(self.algo_input.qubit_op, 'paulis', var_form, optimizer)
        result = algo.run()

        self.log.debug('VQE result: {}.'.format(result))

        self.ref_eigenval = -1.85727503

        num_time_slices = 50
        num_iterations = 11

        state_in = VarFormBased()
        state_in.init_args(var_form, result['opt_params'])

        iqpe = get_algorithm_instance('IQPE')
        iqpe.setup_quantum_backend(backend='qasm_simulator',
                                   shots=100,
                                   skip_transpiler=True)
        iqpe.init_args(
            self.algo_input.qubit_op,
            state_in,
            num_time_slices,
            num_iterations,
            paulis_grouping='random',
            expansion_mode='suzuki',
            expansion_order=2,
        )

        result = iqpe.run()

        self.log.debug('top result str label:         {}'.format(
            result['top_measurement_label']))
        self.log.debug('top result in decimal:        {}'.format(
            result['top_measurement_decimal']))
        self.log.debug('stretch:                      {}'.format(
            result['stretch']))
        self.log.debug('translation:                  {}'.format(
            result['translation']))
        self.log.debug('final eigenvalue from QPE:    {}'.format(
            result['energy']))
        self.log.debug('reference eigenvalue:         {}'.format(
            self.ref_eigenval))
        self.log.debug('ref eigenvalue (transformed): {}'.format(
            (self.ref_eigenval + result['translation']) * result['stretch']))
        self.log.debug('reference binary str label:   {}'.format(
            decimal_to_binary((self.ref_eigenval + result['translation']) *
                              result['stretch'],
                              max_num_digits=num_iterations + 3,
                              fractional_part_only=True)))

        np.testing.assert_approx_equal(self.ref_eigenval,
                                       result['energy'],
                                       significant=2)