Exemplo n.º 1
0
def from_docplex_mp(
        model: Model,
        indicator_big_m: Optional[float] = None) -> QuadraticProgram:
    """Translate a docplex.mp model into a quadratic program.

    Note that this supports only basic functions of docplex as follows:
    - quadratic objective function
    - linear / quadratic / indicator constraints
    - binary / integer / continuous variables

    Args:
        model: The docplex.mp model to be loaded.
        indicator_big_m: The big-M value used for the big-M formulation to convert
            indicator constraints into linear constraints.
            If ``None``, it is automatically derived from the model.

    Returns:
        The quadratic program corresponding to the model.

    Raises:
        QiskitOptimizationError: if the model contains unsupported elements.
    """
    if not isinstance(model, Model):
        raise QiskitOptimizationError(f"The model is not compatible: {model}")

    if model.number_of_user_cut_constraints > 0:
        raise QiskitOptimizationError("User cut constraints are not supported")

    if model.number_of_lazy_constraints > 0:
        raise QiskitOptimizationError("Lazy constraints are not supported")

    if model.number_of_sos > 0:
        raise QiskitOptimizationError("SOS sets are not supported")

    # get name
    quadratic_program = QuadraticProgram(model.name)

    # get variables
    # keep track of names separately, since docplex allows to have None names.
    var_names = {}
    var_bounds = {}
    for x in model.iter_variables():
        if isinstance(x.vartype, ContinuousVarType):
            x_new = quadratic_program.continuous_var(x.lb, x.ub, x.name)
        elif isinstance(x.vartype, BinaryVarType):
            x_new = quadratic_program.binary_var(x.name)
        elif isinstance(x.vartype, IntegerVarType):
            x_new = quadratic_program.integer_var(x.lb, x.ub, x.name)
        else:
            raise QiskitOptimizationError(
                f"Unsupported variable type: {x.name} {x.vartype}")
        var_names[x] = x_new.name
        var_bounds[x.name] = (x_new.lowerbound, x_new.upperbound)

    # objective sense
    minimize = model.objective_sense.is_minimize()

    # make sure objective expression is linear or quadratic and not a variable
    if isinstance(model.objective_expr, Var):
        model.objective_expr = model.objective_expr + 0

    # get objective offset
    constant = model.objective_expr.constant

    # get linear part of objective
    linear = {}
    linear_part = model.objective_expr.get_linear_part()
    for x in linear_part.iter_variables():
        linear[var_names[x]] = linear_part.get_coef(x)

    # get quadratic part of objective
    quadratic = {}
    if isinstance(model.objective_expr, QuadExpr):
        for quad_triplet in model.objective_expr.iter_quad_triplets():
            i = var_names[quad_triplet[0]]
            j = var_names[quad_triplet[1]]
            v = quad_triplet[2]
            quadratic[i, j] = v

    # set objective
    if minimize:
        quadratic_program.minimize(constant, linear, quadratic)
    else:
        quadratic_program.maximize(constant, linear, quadratic)

    # check constraint type
    for constraint in model.iter_constraints():
        # If any constraint is not linear/quadratic/indicator constraints, it raises an error.
        if isinstance(constraint, LinearConstraint):
            if isinstance(constraint, NotEqualConstraint):
                # Notice that NotEqualConstraint is a subclass of Docplex's LinearConstraint,
                # but it cannot be handled by optimization.
                raise QiskitOptimizationError(
                    f"Unsupported constraint: {constraint}")
        elif not isinstance(constraint,
                            (QuadraticConstraint, IndicatorConstraint)):
            raise QiskitOptimizationError(
                f"Unsupported constraint: {constraint}")

    # get linear constraints
    for constraint in model.iter_linear_constraints():
        lhs, sense, rhs = _FromDocplexMp._linear_constraint(
            var_names, constraint)
        quadratic_program.linear_constraint(lhs, sense, rhs, constraint.name)

    # get quadratic constraints
    for constraint in model.iter_quadratic_constraints():
        linear, quadratic, sense, rhs = _FromDocplexMp._quadratic_constraint(
            var_names, constraint)
        quadratic_program.quadratic_constraint(linear, quadratic, sense, rhs,
                                               constraint.name)

    # get indicator constraints
    for constraint in model.iter_indicator_constraints():
        linear_constraints = _FromDocplexMp._indicator_constraints(
            var_names, var_bounds, constraint, indicator_big_m)
        for linear, sense, rhs, name in linear_constraints:
            quadratic_program.linear_constraint(linear, sense, rhs, name)

    return quadratic_program
Exemplo n.º 2
0
def from_gurobipy(model: Model) -> QuadraticProgram:
    """Translate a gurobipy model into a quadratic program.

    Note that this supports only basic functions of gurobipy as follows:
    - quadratic objective function
    - linear / quadratic constraints
    - binary / integer / continuous variables

    Args:
        model: The gurobipy model to be loaded.

    Returns:
        The quadratic program corresponding to the model.

    Raises:
        QiskitOptimizationError: if the model contains unsupported elements.
        MissingOptionalLibraryError: if gurobipy is not installed.
    """

    _check_gurobipy_is_installed("from_gurobipy")

    if not isinstance(model, Model):
        raise QiskitOptimizationError(f"The model is not compatible: {model}")

    quadratic_program = QuadraticProgram()

    # Update the model to make sure everything works as expected
    model.update()

    # get name
    quadratic_program.name = model.ModelName

    # get variables
    # keep track of names separately, since gurobipy allows to have None names.
    var_names = {}
    for x in model.getVars():
        if x.vtype == gp.GRB.CONTINUOUS:
            x_new = quadratic_program.continuous_var(x.lb, x.ub, x.VarName)
        elif x.vtype == gp.GRB.BINARY:
            x_new = quadratic_program.binary_var(x.VarName)
        elif x.vtype == gp.GRB.INTEGER:
            x_new = quadratic_program.integer_var(x.lb, x.ub, x.VarName)
        else:
            raise QiskitOptimizationError(
                f"Unsupported variable type: {x.VarName} {x.vtype}")
        var_names[x] = x_new.name

    # objective sense
    minimize = model.ModelSense == gp.GRB.MINIMIZE

    # Retrieve the objective
    objective = model.getObjective()
    has_quadratic_objective = False

    # Retrieve the linear part in case it is a quadratic objective
    if isinstance(objective, gp.QuadExpr):
        linear_part = objective.getLinExpr()
        has_quadratic_objective = True
    else:
        linear_part = objective

    # Get the constant
    constant = linear_part.getConstant()

    # get linear part of objective
    linear = {}
    for i in range(linear_part.size()):
        linear[var_names[linear_part.getVar(i)]] = linear_part.getCoeff(i)

    # get quadratic part of objective
    quadratic = {}
    if has_quadratic_objective:
        for i in range(objective.size()):
            x = var_names[objective.getVar1(i)]
            y = var_names[objective.getVar2(i)]
            v = objective.getCoeff(i)
            quadratic[x, y] = v

    # set objective
    if minimize:
        quadratic_program.minimize(constant, linear, quadratic)
    else:
        quadratic_program.maximize(constant, linear, quadratic)

    # check whether there are any general constraints
    if model.NumSOS > 0 or model.NumGenConstrs > 0:
        raise QiskitOptimizationError(
            "Unsupported constraint: SOS or General Constraint")

    # get linear constraints
    for constraint in model.getConstrs():
        name = constraint.ConstrName
        sense = constraint.Sense

        left_expr = model.getRow(constraint)
        rhs = constraint.RHS

        lhs = {}
        for i in range(left_expr.size()):
            lhs[var_names[left_expr.getVar(i)]] = left_expr.getCoeff(i)

        if sense == gp.GRB.EQUAL:
            quadratic_program.linear_constraint(lhs, "==", rhs, name)
        elif sense == gp.GRB.GREATER_EQUAL:
            quadratic_program.linear_constraint(lhs, ">=", rhs, name)
        elif sense == gp.GRB.LESS_EQUAL:
            quadratic_program.linear_constraint(lhs, "<=", rhs, name)
        else:
            raise QiskitOptimizationError(
                f"Unsupported constraint sense: {constraint}")

    # get quadratic constraints
    for constraint in model.getQConstrs():
        name = constraint.QCName
        sense = constraint.QCSense

        left_expr = model.getQCRow(constraint)
        rhs = constraint.QCRHS

        linear = {}
        quadratic = {}

        linear_part = left_expr.getLinExpr()
        for i in range(linear_part.size()):
            linear[var_names[linear_part.getVar(i)]] = linear_part.getCoeff(i)

        for i in range(left_expr.size()):
            x = var_names[left_expr.getVar1(i)]
            y = var_names[left_expr.getVar2(i)]
            v = left_expr.getCoeff(i)
            quadratic[x, y] = v

        if sense == gp.GRB.EQUAL:
            quadratic_program.quadratic_constraint(linear, quadratic, "==",
                                                   rhs, name)
        elif sense == gp.GRB.GREATER_EQUAL:
            quadratic_program.quadratic_constraint(linear, quadratic, ">=",
                                                   rhs, name)
        elif sense == gp.GRB.LESS_EQUAL:
            quadratic_program.quadratic_constraint(linear, quadratic, "<=",
                                                   rhs, name)
        else:
            raise QiskitOptimizationError(
                f"Unsupported constraint sense: {constraint}")

    return quadratic_program
Exemplo n.º 3
0
class _FromDocplexMp:
    _sense_dict = {
        ComparisonType.EQ: "==",
        ComparisonType.LE: "<=",
        ComparisonType.GE: ">="
    }

    def __init__(self, model: Model):
        """
        Args:
            model: Docplex model
        """
        self._model: Model = model
        self._quadratic_program: QuadraticProgram = QuadraticProgram()
        self._var_names: Dict[Var, str] = {}
        self._var_bounds: Dict[str, Tuple[float, float]] = {}

    def _variables(self):
        # keep track of names separately, since docplex allows to have None names.
        for x in self._model.iter_variables():
            if isinstance(x.vartype, ContinuousVarType):
                x_new = self._quadratic_program.continuous_var(
                    x.lb, x.ub, x.name)
            elif isinstance(x.vartype, BinaryVarType):
                x_new = self._quadratic_program.binary_var(x.name)
            elif isinstance(x.vartype, IntegerVarType):
                x_new = self._quadratic_program.integer_var(x.lb, x.ub, x.name)
            else:
                raise QiskitOptimizationError(
                    f"Unsupported variable type: {x.name} {x.vartype}")
            self._var_names[x] = x_new.name
            self._var_bounds[x.name] = (x_new.lowerbound, x_new.upperbound)

    def _linear_expr(self, expr: AbstractLinearExpr) -> Dict[str, float]:
        # AbstractLinearExpr is a parent of LinearExpr, ConstantExpr, and ZeroExpr
        linear = {}
        for x, coeff in expr.iter_terms():
            linear[self._var_names[x]] = coeff
        return linear

    def _quadratic_expr(
        self, expr: QuadExpr
    ) -> Tuple[Dict[str, float], Dict[Tuple[str, str], float]]:
        linear = self._linear_expr(expr.get_linear_part())
        quad = {}
        for x, y, coeff in expr.iter_quad_triplets():
            i = self._var_names[x]
            j = self._var_names[y]
            quad[i, j] = coeff
        return linear, quad

    def quadratic_program(
            self, indicator_big_m: Optional[float]) -> QuadraticProgram:
        """Generate a quadratic program corresponding to the input Docplex model.

        Args:
            indicator_big_m: The big-M value used for the big-M formulation to convert
            indicator constraints into linear constraints.
            If ``None``, it is automatically derived from the model.

        Returns:
            a quadratic program corresponding to the input Docplex model.

        """
        self._quadratic_program = QuadraticProgram(self._model.name)

        # prepare variables
        self._variables()

        # objective sense
        minimize = self._model.objective_sense.is_minimize()

        # make sure objective expression is linear or quadratic and not a variable
        if isinstance(self._model.objective_expr, Var):
            self._model.objective_expr = self._model.objective_expr + 0  # Var + 0 -> LinearExpr

        constant = self._model.objective_expr.constant
        if isinstance(self._model.objective_expr, QuadExpr):
            linear, quadratic = self._quadratic_expr(
                self._model.objective_expr)
        else:
            linear = self._linear_expr(
                self._model.objective_expr.get_linear_part())
            quadratic = {}

        # set objective
        if minimize:
            self._quadratic_program.minimize(constant, linear, quadratic)
        else:
            self._quadratic_program.maximize(constant, linear, quadratic)

        # set linear constraints
        for constraint in self._model.iter_linear_constraints():
            linear, sense, rhs = self._linear_constraint(constraint)
            if not linear:  # lhs == 0
                warn(f"Trivial constraint: {constraint}", stacklevel=3)
            self._quadratic_program.linear_constraint(linear, sense, rhs,
                                                      constraint.name)

        # set quadratic constraints
        for constraint in self._model.iter_quadratic_constraints():
            linear, quadratic, sense, rhs = self._quadratic_constraint(
                constraint)
            if not linear and not quadratic:  # lhs == 0
                warn(f"Trivial constraint: {constraint}", stacklevel=3)
            self._quadratic_program.quadratic_constraint(
                linear, quadratic, sense, rhs, constraint.name)

        # set indicator constraints
        for index, constraint in enumerate(
                self._model.iter_indicator_constraints()):
            linear, _, _ = self._linear_constraint(
                constraint.linear_constraint)
            if not linear:  # lhs == 0
                warn(f"Trivial constraint: {constraint}", stacklevel=3)
            prefix = constraint.name or f"ind{index}"
            linear_constraints = self._indicator_constraints(
                constraint, prefix, indicator_big_m)
            for linear, sense, rhs, name in linear_constraints:
                self._quadratic_program.linear_constraint(
                    linear, sense, rhs, name)

        return self._quadratic_program

    @staticmethod
    def _subtract(dict1: Dict[Any, float],
                  dict2: Dict[Any, float]) -> Dict[Any, float]:
        """Calculate dict1 - dict2"""
        ret = dict1.copy()
        for key, val2 in dict2.items():
            if key in dict1:
                val1 = ret[key]
                if isclose(val1, val2):
                    del ret[key]
                else:
                    ret[key] -= val2
            else:
                ret[key] = -val2
        return ret

    def _linear_constraint(
            self, constraint: LinearConstraint
    ) -> Tuple[Dict[str, float], str, float]:
        left_expr = constraint.get_left_expr()
        right_expr = constraint.get_right_expr()
        # for linear constraints we may get an instance of Var instead of expression,
        # e.g. x + y = z
        if not isinstance(left_expr, (Expr, Var)):
            raise QiskitOptimizationError(
                f"Unsupported expression: {left_expr} {type(left_expr)}")
        if not isinstance(right_expr, (Expr, Var)):
            raise QiskitOptimizationError(
                f"Unsupported expression: {right_expr} {type(right_expr)}")
        if constraint.sense not in self._sense_dict:
            raise QiskitOptimizationError(
                f"Unsupported constraint sense: {constraint}")

        if isinstance(left_expr, Var):
            left_expr = left_expr + 0  # Var + 0 -> LinearExpr
        left_linear = self._linear_expr(left_expr)

        if isinstance(right_expr, Var):
            right_expr = right_expr + 0
        right_linear = self._linear_expr(right_expr)

        linear = self._subtract(left_linear, right_linear)
        rhs = right_expr.constant - left_expr.constant
        return linear, self._sense_dict[constraint.sense], rhs

    def _quadratic_constraint(
        self, constraint: QuadraticConstraint
    ) -> Tuple[Dict[str, float], Dict[Tuple[str, str], float], str, float]:
        left_expr = constraint.get_left_expr()
        right_expr = constraint.get_right_expr()
        if not isinstance(left_expr, (Expr, Var)):
            raise QiskitOptimizationError(
                f"Unsupported expression: {left_expr} {type(left_expr)}")
        if not isinstance(right_expr, (Expr, Var)):
            raise QiskitOptimizationError(
                f"Unsupported expression: {right_expr} {type(right_expr)}")
        if constraint.sense not in self._sense_dict:
            raise QiskitOptimizationError(
                f"Unsupported constraint sense: {constraint}")

        if isinstance(left_expr, Var):
            left_expr = left_expr + 0  # Var + 0 -> LinearExpr
        if left_expr.is_quad_expr():
            left_lin, left_quad = self._quadratic_expr(left_expr)
        else:
            left_lin = self._linear_expr(left_expr)
            left_quad = {}

        if isinstance(right_expr, Var):
            right_expr = right_expr + 0
        if right_expr.is_quad_expr():
            right_lin, right_quad = self._quadratic_expr(right_expr)
        else:
            right_lin = self._linear_expr(right_expr)
            right_quad = {}

        linear = self._subtract(left_lin, right_lin)
        quadratic = self._subtract(left_quad, right_quad)
        rhs = right_expr.constant - left_expr.constant
        return linear, quadratic, self._sense_dict[constraint.sense], rhs

    def _linear_bounds(self, linear: Dict[str, float]):
        linear_lb = 0.0
        linear_ub = 0.0
        for var_name, val in linear.items():
            x_lb, x_ub = self._var_bounds[var_name]
            x_lb *= val
            x_ub *= val
            linear_lb += min(x_lb, x_ub)
            linear_ub += max(x_lb, x_ub)
        return linear_lb, linear_ub

    def _indicator_constraints(
        self,
        constraint: IndicatorConstraint,
        name: str,
        indicator_big_m: Optional[float] = None,
    ):
        binary_var = constraint.binary_var
        active_value = constraint.active_value
        linear_constraint = constraint.linear_constraint
        linear, sense, rhs = self._linear_constraint(linear_constraint)
        linear_lb, linear_ub = self._linear_bounds(linear)
        ret = []
        if sense in ["<=", "=="]:
            big_m = max(0.0, linear_ub -
                        rhs) if indicator_big_m is None else indicator_big_m
            if active_value:
                # rhs += big_m * (1 - binary_var)
                linear2 = self._subtract(linear, {binary_var.name: -big_m})
                rhs2 = rhs + big_m
            else:
                # rhs += big_m * binary_var
                linear2 = self._subtract(linear, {binary_var.name: big_m})
                rhs2 = rhs
            name2 = name + "_LE" if sense == "==" else name
            ret.append((linear2, "<=", rhs2, name2))
        if sense in [">=", "=="]:
            big_m = max(
                0.0, rhs -
                linear_lb) if indicator_big_m is None else indicator_big_m
            if active_value:
                # rhs += -big_m * (1 - binary_var)
                linear2 = self._subtract(linear, {binary_var.name: big_m})
                rhs2 = rhs - big_m
            else:
                # rhs += -big_m * binary_var
                linear2 = self._subtract(linear, {binary_var.name: -big_m})
                rhs2 = rhs
            name2 = name + "_GE" if sense == "==" else name
            ret.append((linear2, ">=", rhs2, name2))
        if sense not in ["<=", ">=", "=="]:
            raise QiskitOptimizationError(
                f"Internal error: invalid sense of indicator constraint: {sense}"
            )
        return ret