Exemplo n.º 1
0
    def setUp(self):

        torch.manual_seed(0)
        np.random.seed(0)
        set_torch_double_precision()

        # molecule
        self.mol = Molecule(atom='Li 0 0 0; H 0 0 3.015',
                            unit='bohr',
                            calculator='pyscf',
                            basis='sto-3g')

        # wave function
        self.wf = SlaterJastrowBackFlow(self.mol,
                                        kinetic='jacobi',
                                        configs='single_double(2,2)',
                                        backflow_kernel=BackFlowKernelPowerSum,
                                        orbital_dependent_backflow=False,
                                        include_all_mo=True)

        # fc weights
        self.wf.fc.weight.data = torch.rand(self.wf.fc.weight.shape)

        # jastrow weights
        self.wf.jastrow.jastrow_kernel.weight.data = torch.rand(
            self.wf.jastrow.jastrow_kernel.weight.shape)

        # sampler
        self.sampler = Metropolis(nwalkers=500,
                                  nstep=200,
                                  step_size=0.05,
                                  ndim=self.wf.ndim,
                                  nelec=self.wf.nelec,
                                  init=self.mol.domain('normal'),
                                  move={
                                      'type': 'all-elec',
                                      'proba': 'normal'
                                  })

        # optimizer
        self.opt = optim.Adam(self.wf.parameters(), lr=0.01)

        # solver
        self.solver = SolverSlaterJastrow(wf=self.wf,
                                          sampler=self.sampler,
                                          optimizer=self.opt)

        # artificial pos
        self.nbatch = 10
        self.pos = torch.as_tensor(
            np.random.rand(self.nbatch, self.wf.nelec * 3))
        self.pos.requires_grad = True
Exemplo n.º 2
0
    def setUp(self):

        torch.manual_seed(0)
        np.random.seed(0)

        # optimal parameters
        self.opt_r = 0.69  # the two h are at +0.69 and -0.69
        self.opt_sigma = 1.24

        # molecule
        self.mol = Molecule(atom='H 0 0 -0.69; H 0 0 0.69',
                            unit='bohr',
                            calculator='pyscf',
                            basis='sto-3g')

        # wave function
        self.wf = SlaterJastrow(self.mol,
                                kinetic='auto',
                                configs='single(2,2)')

        # sampler
        self.sampler = Metropolis(nwalkers=1000,
                                  nstep=2000,
                                  step_size=0.5,
                                  ndim=self.wf.ndim,
                                  nelec=self.wf.nelec,
                                  init=self.mol.domain('normal'),
                                  move={
                                      'type': 'all-elec',
                                      'proba': 'normal'
                                  })

        self.hmc_sampler = Hamiltonian(nwalkers=100,
                                       nstep=200,
                                       step_size=0.1,
                                       ndim=self.wf.ndim,
                                       nelec=self.wf.nelec,
                                       init=self.mol.domain('normal'))

        # optimizer
        self.opt = optim.Adam(self.wf.parameters(), lr=0.01)

        # solver
        self.solver = SolverSlaterJastrow(wf=self.wf,
                                          sampler=self.sampler,
                                          optimizer=self.opt)

        # ground state energy
        self.ground_state_energy = -1.16

        # ground state pos
        self.ground_state_pos = 0.69
Exemplo n.º 3
0
    def setUp(self):

        torch.manual_seed(0)
        np.random.seed(0)
        set_torch_double_precision()

        # optimal parameters
        self.opt_r = 0.69  # the two h are at +0.69 and -0.69
        self.opt_sigma = 1.24

        # molecule
        self.mol = Molecule(atom='H 0 0 -0.69; H 0 0 0.69',
                            unit='bohr',
                            calculator='pyscf',
                            basis='sto-3g')

        # wave function
        self.wf = SlaterOrbitalDependentJastrow(
            self.mol,
            kinetic='auto',
            configs='cas(2,2)',
            jastrow_kernel=FullyConnectedJastrowKernel,
            include_all_mo=True)

        # sampler
        self.sampler = Metropolis(nwalkers=1000,
                                  nstep=2000,
                                  step_size=0.5,
                                  ndim=self.wf.ndim,
                                  nelec=self.wf.nelec,
                                  init=self.mol.domain('normal'),
                                  move={
                                      'type': 'all-elec',
                                      'proba': 'normal'
                                  })

        # optimizer
        self.opt = optim.Adam(self.wf.parameters(), lr=0.01)

        # solver
        self.solver = SolverSlaterJastrow(wf=self.wf,
                                          sampler=self.sampler,
                                          optimizer=self.opt)

        # ground state energy
        self.ground_state_energy = -1.16

        # ground state pos
        self.ground_state_pos = 0.69
Exemplo n.º 4
0
    def setUp(self):

        torch.manual_seed(0)
        np.random.seed(0)
        set_torch_double_precision()

        # molecule
        path_hdf5 = (PATH_TEST / 'hdf5/LiH_adf_dz.hdf5').absolute().as_posix()
        self.mol = Molecule(load=path_hdf5)

        # wave function
        self.wf = SlaterOrbitalDependentJastrow(self.mol,
                                                kinetic='jacobi',
                                                configs='cas(2,2)',
                                                include_all_mo=True)

        # fc weights
        self.wf.fc.weight.data = torch.rand(self.wf.fc.weight.shape)

        # jastrow weights
        for ker in self.wf.jastrow.jastrow_kernel.jastrow_functions:
            ker.weight.data = torch.rand(1)

        # sampler
        self.sampler = Metropolis(nwalkers=500,
                                  nstep=200,
                                  step_size=0.05,
                                  ndim=self.wf.ndim,
                                  nelec=self.wf.nelec,
                                  init=self.mol.domain('normal'),
                                  move={
                                      'type': 'all-elec',
                                      'proba': 'normal'
                                  })

        # optimizer
        self.opt = optim.Adam(self.wf.parameters(), lr=0.01)

        # solver
        self.solver = SolverSlaterJastrow(wf=self.wf,
                                          sampler=self.sampler,
                                          optimizer=self.opt)

        # artificial pos
        self.nbatch = 10
        self.pos = torch.as_tensor(
            np.random.rand(self.nbatch, self.wf.nelec * 3))
        self.pos.requires_grad = True
Exemplo n.º 5
0
    def setUp(self):

        torch.manual_seed(0)
        np.random.seed(0)

        # optimal parameters
        self.opt_r = 0.69  # the two h are at +0.69 and -0.69
        self.opt_sigma = 1.24

        # molecule
        self.mol = Molecule(atom='H 0 0 -0.69; H 0 0 0.69',
                            unit='bohr',
                            calculator='pyscf',
                            basis='sto-3g')

        # wave function
        self.wf = SlaterJastrow(self.mol,
                                kinetic='jacobi',
                                configs='single(2,2)')

        # sampler
        self.sampler = Metropolis(nwalkers=100,
                                  nstep=500,
                                  step_size=0.5,
                                  ndim=self.wf.ndim,
                                  nelec=self.wf.nelec,
                                  ntherm=0,
                                  ndecor=1,
                                  init=self.mol.domain('normal'),
                                  move={
                                      'type': 'all-elec',
                                      'proba': 'normal'
                                  })

        # optimizer
        self.opt = optim.Adam(self.wf.parameters(), lr=0.01)

        # solver
        self.solver = SolverSlaterJastrow(wf=self.wf,
                                          sampler=self.sampler,
                                          optimizer=self.opt)
Exemplo n.º 6
0
    def setUp(self):

        torch.manual_seed(0)

        # molecule
        path_hdf5 = (PATH_TEST / 'hdf5/H2_adf_dzp.hdf5').absolute().as_posix()
        self.mol = Molecule(load=path_hdf5)

        # wave function
        self.wf = SlaterJastrow(self.mol,
                                kinetic='auto',
                                configs='single(2,2)')

        # sampler
        self.sampler = Metropolis(nwalkers=1000,
                                  nstep=2000,
                                  step_size=0.5,
                                  ndim=self.wf.ndim,
                                  nelec=self.wf.nelec,
                                  init=self.mol.domain('normal'),
                                  move={
                                      'type': 'all-elec',
                                      'proba': 'normal'
                                  })

        # optimizer
        self.opt = optim.Adam(self.wf.parameters(), lr=0.01)

        # solver
        self.solver = SolverSlaterJastrow(wf=self.wf,
                                          sampler=self.sampler,
                                          optimizer=self.opt)

        # ground state energy
        self.ground_state_energy = -1.16

        # ground state pos
        self.ground_state_pos = 0.69
Exemplo n.º 7
0
    def setUp(self):

        torch.manual_seed(0)
        np.random.seed(0)

        # molecule
        self.mol = Molecule(atom='Li 0 0 0; H 0 0 3.015',
                            unit='bohr',
                            calculator='pyscf',
                            basis='sto-3g')

        # wave function
        self.wf = SlaterJastrow(self.mol,
                                kinetic='jacobi',
                                configs='single(2,2)',
                                include_all_mo=False)

        # sampler
        self.sampler = Metropolis(nwalkers=500,
                                  nstep=200,
                                  step_size=0.05,
                                  ndim=self.wf.ndim,
                                  nelec=self.wf.nelec,
                                  init=self.mol.domain('normal'),
                                  move={
                                      'type': 'all-elec',
                                      'proba': 'normal'
                                  })

        # optimizer
        self.opt = optim.Adam(self.wf.parameters(), lr=0.01)

        # solver
        self.solver = SolverSlaterJastrow(wf=self.wf,
                                          sampler=self.sampler,
                                          optimizer=self.opt)
Exemplo n.º 8
0
# define the wave function
wf = SlaterJastrow(mol, kinetic='jacobi', configs='ground_state')

# sampler
sampler = Metropolis(nwalkers=100,
                     nstep=500,
                     step_size=0.25,
                     nelec=wf.nelec,
                     ndim=wf.ndim,
                     init=mol.domain('atomic'),
                     move={
                         'type': 'one-elec',
                         'proba': 'normal'
                     })

# solver
solver = SolverSlaterJastrow(wf=wf, sampler=sampler)

# single point
obs = solver.single_point()

# reconfigure sampler
solver.sampler.ntherm = 0
solver.sampler.ndecor = 5

# compute the sampling traj
pos = solver.sampler(solver.wf.pdf)
obs = solver.sampling_traj(pos)
plot_walkers_traj(obs.local_energy, walkers='mean')
Exemplo n.º 9
0
    'lr': 1E-6
}, {
    'params': wf.mo.parameters(),
    'lr': 1E-3
}, {
    'params': wf.fc.parameters(),
    'lr': 2E-3
}]
opt = optim.Adam(lr_dict, lr=1E-3)

# scheduler
scheduler = optim.lr_scheduler.StepLR(opt, step_size=100, gamma=0.90)

# QMC solver
solver = SolverSlaterJastrow(wf=wf,
                             sampler=sampler,
                             optimizer=opt,
                             scheduler=None)

# perform a single point calculation
obs = solver.single_point()

# optimize the wave function
# configure the solver
solver.configure(track=['local_energy'],
                 freeze=['ao', 'mo'],
                 loss='energy',
                 grad='auto',
                 ortho_mo=False,
                 clip_loss=False,
                 resampling={
                     'mode': 'update',
Exemplo n.º 10
0
    def setUp(self):

        set_torch_double_precision()
        reset_generator()

        # molecule
        self.mol = Molecule(atom='Li 0 0 0; H 0 0 3.015',
                            unit='bohr',
                            calculator='pyscf',
                            basis='sto-3g')

        # molecule
        self.mol_ref = Molecule(atom='Li 0 0 0; H 0 0 3.015',
                                unit='bohr',
                                calculator='pyscf',
                                basis='sto-3g')

        # backflow wave function
        self.wf = SlaterJastrowBackFlow(self.mol,
                                        kinetic='jacobi',
                                        configs='single_double(2,2)',
                                        include_all_mo=True)
        self.wf.ao.backflow_trans.backflow_kernel.weight.data *= 0.
        self.wf.ao.backflow_trans.backflow_kernel.weight.requires_grad = False

        # normal wave function
        self.wf_ref = SlaterJastrow(self.mol_ref,
                                    kinetic='jacobi',
                                    include_all_mo=True,
                                    configs='single_double(2,2)')

        # fc weights
        self.random_fc_weight = torch.rand(self.wf.fc.weight.shape)
        self.wf.fc.weight.data = self.random_fc_weight.clone()
        self.wf_ref.fc.weight.data = self.random_fc_weight.clone()

        # jastrow weights
        self.random_jastrow_weight = torch.rand(
            self.wf.jastrow.jastrow_kernel.weight.shape)

        self.wf.jastrow.jastrow_kernel.weight.data = self.random_jastrow_weight.clone(
        )
        self.wf_ref.jastrow.jastrow_kernel.weight.data = self.random_jastrow_weight.clone(
        )

        reset_generator()
        # sampler
        self.sampler = Metropolis(nwalkers=5,
                                  nstep=200,
                                  step_size=0.05,
                                  ndim=self.wf.ndim,
                                  nelec=self.wf.nelec,
                                  init=self.mol.domain('normal'),
                                  move={
                                      'type': 'all-elec',
                                      'proba': 'normal'
                                  })

        reset_generator()
        self.sampler_ref = Metropolis(nwalkers=5,
                                      nstep=200,
                                      step_size=0.05,
                                      ndim=self.wf.ndim,
                                      nelec=self.wf.nelec,
                                      init=self.mol.domain('normal'),
                                      move={
                                          'type': 'all-elec',
                                          'proba': 'normal'
                                      })

        # optimizer
        reset_generator()
        self.opt = optim.Adam(self.wf.parameters(), lr=0.01)

        reset_generator()
        self.opt_ref = optim.Adam(self.wf_ref.parameters(), lr=0.01)

        # solver
        self.solver_ref = SolverSlaterJastrow(wf=self.wf_ref,
                                              sampler=self.sampler_ref,
                                              optimizer=self.opt_ref)

        self.solver = SolverSlaterJastrow(wf=self.wf,
                                          sampler=self.sampler,
                                          optimizer=self.opt)

        # artificial pos
        self.nbatch = 10
        self.pos = torch.as_tensor(
            np.random.rand(self.nbatch, self.wf.nelec * 3))
        self.pos.requires_grad = True