def rl_loop(): """Run the reinforcement learning loop This tries to create a realistic way to run the reinforcement learning with all default parameters. """ if goparams.DUMMY_MODEL: # monkeypatch the hyperparams so that we get a quickly executing network. dual_net.get_default_hyperparams = lambda **kwargs: { 'k': 8, 'fc_width': 16, 'num_shared_layers': 1, 'l2_strength': 1e-4, 'momentum': 0.9} dual_net.TRAIN_BATCH_SIZE = 16 dual_net.EXAMPLES_PER_GENERATION = 64 #monkeypatch the shuffle buffer size so we don't spin forever shuffling up positions. preprocessing.SHUFFLE_BUFFER_SIZE = 1000 qmeas.stop_time('selfplay_wait') print("Gathering game output...") gather() print("Training on gathered game data...") _, model_name = get_latest_model() new_model = train() if goparams.EVALUATE_PUZZLES: qmeas.start_time('puzzle') new_model_path = os.path.join(MODELS_DIR, new_model) sgf_files = [ './benchmark_sgf/9x9_pro_YKSH.sgf', './benchmark_sgf/9x9_pro_IYMD.sgf', './benchmark_sgf/9x9_pro_YSIY.sgf', './benchmark_sgf/9x9_pro_IYHN.sgf', ] result, total_pct = predict_games.report_for_puzzles(new_model_path, sgf_files, 2, tries_per_move=1) print('accuracy = ', total_pct) qmeas.record('puzzle_total', total_pct) qmeas.record('puzzle_result', repr(result)) qmeas.record('puzzle_summary', {'results': repr(result), 'total_pct': total_pct, 'model': new_model}) qmeas._flush() with open(os.path.join(BASE_DIR, new_model + '-puzzles.txt'), 'w') as f: f.write(repr(result)) f.write('\n' + str(total_pct) + '\n') qmeas.stop_time('puzzle') if total_pct >= goparams.TERMINATION_ACCURACY: print('Reaching termination accuracy; ', goparams.TERMINATION_ACCURACY) with open('TERMINATE_FLAG', 'w') as f: f.write(repr(result)) f.write('\n' + str(total_pct) + '\n') if goparams.EVALUATE_MODELS: if not evaluate(model_name, new_model): bury_latest_model()
def rl_loop_eval(): """Run the reinforcement learning loop This tries to create a realistic way to run the reinforcement learning with all default parameters. """ (_, new_model) = get_latest_model() qmeas.start_time('puzzle') new_model_path = os.path.join(MODELS_DIR, new_model) sgf_files = [ './benchmark_sgf/9x9_pro_YKSH.sgf', './benchmark_sgf/9x9_pro_IYMD.sgf', './benchmark_sgf/9x9_pro_YSIY.sgf', './benchmark_sgf/9x9_pro_IYHN.sgf', ] result, total_pct = predict_games.report_for_puzzles_parallel( new_model_path, sgf_files, 2, tries_per_move=1) #result, total_pct = predict_games.report_for_puzzles(new_model_path, sgf_files, 2, tries_per_move=1) print('accuracy = ', total_pct) print('result = ', result) mlperf_log.minigo_print(key=mlperf_log.EVAL_ACCURACY, value={ "epoch": iteration, "value": total_pct }) mlperf_log.minigo_print(key=mlperf_log.EVAL_TARGET, value=goparams.TERMINATION_ACCURACY) qmeas.record('puzzle_total', total_pct) qmeas.record('puzzle_result', repr(result)) qmeas.record('puzzle_summary', { 'results': repr(result), 'total_pct': total_pct, 'model': new_model }) qmeas._flush() with open(os.path.join(BASE_DIR, new_model + '-puzzles.txt'), 'w') as f: f.write(repr(result)) f.write('\n' + str(total_pct) + '\n') qmeas.stop_time('puzzle') if total_pct >= goparams.TERMINATION_ACCURACY: print('Reaching termination accuracy; ', goparams.TERMINATION_ACCURACY) mlperf_log.minigo_print(key=mlperf_log.RUN_STOP, value={"success": True}) with open('TERMINATE_FLAG', 'w') as f: f.write(repr(result)) f.write('\n' + str(total_pct) + '\n') qmeas.end()
def rl_loop(): """Run the reinforcement learning loop This is meant to be more of an integration test than a realistic way to run the reinforcement learning. """ # monkeypatch the hyperparams so that we get a quickly executing network. dual_net.get_default_hyperparams = lambda **kwargs: { 'k': 8, 'fc_width': 16, 'num_shared_layers': 1, 'l2_strength': 1e-4, 'momentum': 0.9 } dual_net.TRAIN_BATCH_SIZE = 16 dual_net.EXAMPLES_PER_GENERATION = 64 #monkeypatch the shuffle buffer size so we don't spin forever shuffling up positions. preprocessing.SHUFFLE_BUFFER_SIZE = 1000 # with tempfile.TemporaryDirectory() as base_dir: base_dir = "/tmp/minigo" with open('/tmp/foo', 'w') as fff: working_dir = os.path.join(base_dir, 'models_in_training') model_save_path = os.path.join(base_dir, 'models', '000000-bootstrap') next_model_save_file = os.path.join(base_dir, 'models', '000001-nextmodel') selfplay_dir = os.path.join(base_dir, 'data', 'selfplay') model_selfplay_dir = os.path.join(selfplay_dir, '000000-bootstrap') gather_dir = os.path.join(base_dir, 'data', 'training_chunks') holdout_dir = os.path.join(base_dir, 'data', 'holdout', '000000-bootstrap') sgf_dir = os.path.join(base_dir, 'sgf', '000000-bootstrap') os.makedirs(os.path.join(base_dir, 'data'), exist_ok=True) print("Creating random initial weights...") main.bootstrap(working_dir, model_save_path) for i in range(100): qmeas.start_time('main-loop') print("Playing some games...") # Do two selfplay runs to test gather functionality qmeas.start_time('main-loop-self-play') for j in range(2): main.selfplay(load_file=model_save_path, output_dir=model_selfplay_dir, output_sgf=sgf_dir, holdout_pct=0, readouts=10) qmeas.stop_time('main-loop-self-play') # Do one holdout run to test validation qmeas.start_time('main-loop-self-play-holdout') main.selfplay(load_file=model_save_path, holdout_dir=holdout_dir, output_dir=model_selfplay_dir, output_sgf=sgf_dir, holdout_pct=100, readouts=10) qmeas.stop_time('main-loop-self-play-holdout') print("See sgf files here?") sgf_listing = subprocess.check_output( ["ls", "-l", sgf_dir + "/full"]) print(sgf_listing.decode("utf-8")) print("Gathering game output...") qmeas.start_time('main-loop-gather') main.gather(input_directory=selfplay_dir, output_directory=gather_dir) qmeas.stop_time('main-loop-gather') print("Training on gathered game data...") qmeas.start_time('main-loop-train') main.train(working_dir, gather_dir, next_model_save_file, generation_num=1) qmeas.stop_time('main-loop-train') print("Trying validate on 'holdout' game...") qmeas.start_time('main-loop-validate') main.validate(working_dir, holdout_dir) qmeas.stop_time('main-loop-validate') print("Verifying that new checkpoint is playable...") main.selfplay(load_file=next_model_save_file, holdout_dir=holdout_dir, output_dir=model_selfplay_dir, output_sgf=sgf_dir, readouts=10) qmeas.stop_time('main-loop') qmeas._flush()
def rl_loop(): """Run the reinforcement learning loop This is meant to be more of an integration test than a realistic way to run the reinforcement learning. """ # monkeypatch the hyperparams so that we get a quickly executing network. dual_net.get_default_hyperparams = lambda **kwargs: { 'k': 8, 'fc_width': 16, 'num_shared_layers': 1, 'l2_strength': 1e-4, 'momentum': 0.9} dual_net.TRAIN_BATCH_SIZE = 16 dual_net.EXAMPLES_PER_GENERATION = 64 #monkeypatch the shuffle buffer size so we don't spin forever shuffling up positions. preprocessing.SHUFFLE_BUFFER_SIZE = 1000 # with tempfile.TemporaryDirectory() as base_dir: base_dir = "/tmp/minigo" with open('/tmp/foo', 'w') as fff: working_dir = os.path.join(base_dir, 'models_in_training') model_save_path = os.path.join(base_dir, 'models', '000000-bootstrap') next_model_save_file = os.path.join(base_dir, 'models', '000001-nextmodel') selfplay_dir = os.path.join(base_dir, 'data', 'selfplay') model_selfplay_dir = os.path.join(selfplay_dir, '000000-bootstrap') gather_dir = os.path.join(base_dir, 'data', 'training_chunks') holdout_dir = os.path.join( base_dir, 'data', 'holdout', '000000-bootstrap') sgf_dir = os.path.join(base_dir, 'sgf', '000000-bootstrap') os.makedirs(os.path.join(base_dir, 'data'), exist_ok=True) print("Creating random initial weights...") main.bootstrap(working_dir, model_save_path) for i in range(100): qmeas.start_time('main-loop') print("Playing some games...") # Do two selfplay runs to test gather functionality qmeas.start_time('main-loop-self-play') for j in range(2): main.selfplay( load_file=model_save_path, output_dir=model_selfplay_dir, output_sgf=sgf_dir, holdout_pct=0, readouts=10) qmeas.stop_time('main-loop-self-play') # Do one holdout run to test validation qmeas.start_time('main-loop-self-play-holdout') main.selfplay( load_file=model_save_path, holdout_dir=holdout_dir, output_dir=model_selfplay_dir, output_sgf=sgf_dir, holdout_pct=100, readouts=10) qmeas.stop_time('main-loop-self-play-holdout') print("See sgf files here?") sgf_listing = subprocess.check_output(["ls", "-l", sgf_dir + "/full"]) print(sgf_listing.decode("utf-8")) print("Gathering game output...") qmeas.start_time('main-loop-gather') main.gather(input_directory=selfplay_dir, output_directory=gather_dir) qmeas.stop_time('main-loop-gather') print("Training on gathered game data...") qmeas.start_time('main-loop-train') main.train(working_dir, gather_dir, next_model_save_file, generation_num=1) qmeas.stop_time('main-loop-train') print("Trying validate on 'holdout' game...") qmeas.start_time('main-loop-validate') main.validate(working_dir, holdout_dir) qmeas.stop_time('main-loop-validate') print("Verifying that new checkpoint is playable...") main.selfplay( load_file=next_model_save_file, holdout_dir=holdout_dir, output_dir=model_selfplay_dir, output_sgf=sgf_dir, readouts=10) qmeas.stop_time('main-loop') qmeas._flush()