sys.path.insert(0, os.getcwd()) import workdir.classes.config from qml.cv import QCV from qml.models import QXgb, QXgb2 from workdir.classes.models import qm if __name__ == "__main__": CV_SCORE_TO_STOP = 0.5417 DATAS = [27] EVALS_ROUNDS = 100000 rounds = EVALS_ROUNDS cv = QCV(qm) counter = 0 def fn(params): global counter counter += 1 data_id = params['data_id'] del params['data_id'] params['num_boost_rounds'] = int(1.3**params['num_boost_rounds']) params['eta'] = round(1 / (1.3**params['eta']), 4) params['lr_decay'] = round(1 / (2**params['lr_decay']), 4) params['subsample'] = params['subsample'] / 10 params['colsample_bytree'] = params['colsample_bytree'] / 10 params['colsample_bylevel'] = params['colsample_bylevel'] / 10
import datetime import numpy as np from hyperopt import hp, fmin, tpe import os import sys sys.path.insert(0, os.getcwd()) import workdir.classes.config from qml.cv import QCV from qml.models import QXgb, QAvg, QAvgOneModelData from workdir.classes.models import qm cv = QCV(qm) # model_id = qm.add_by_params( # QXgb( # ** {"alpha": 1.0, "booster": "gbtree", "colsample_bylevel": 0.7, "colsample_bytree": 0.8, "eta": 0.004, "eval_metric": "logloss", # "gamma": 0.2, "max_depth": 4, "num_boost_round": 2015, "objective": "binary:logistic", "subsample": 0.8, "tree_method": "hist"} # ), # 'hyperopt xgb', level=-1 # ) model_id = qm.add_by_params(QAvgOneModelData(416, 2), level=-2) cv.features_sel_del( model_id, 23, early_stop_cv=lambda x: x < 0.557, # minmax log_file='workdir/logs/data23_sub_cols3.txt', exclude=[
from hyperopt import hp, fmin, tpe import os import sys sys.path.insert(0, os.getcwd()) import workdir.classes.config from qml.cv import QCV from qml.helpers import get_engine from qml.models import QXgb, QAvg, QRankedAvg, QRankedByLineAvg, QStackModel from workdir.classes.models import qm if __name__ == "__main__": _, conn = get_engine() cv = QCV(qm) CV_SCORE_TO_SELECT = 0.56 CV_SCORE_TO_STOP = 0.5416 ROUNDS = 20000 res = conn.execute( """ select data_id, cls, descr, substring_index(group_concat(model_id order by cv_score), ',', 5) as models from qml_results r inner join qml_models m using(model_id) where m.level=1 and cv_score < {} and data_id in (66, 69, 266, 269, 47 )
import datetime import numpy as np from hyperopt import hp, fmin, tpe import os import sys sys.path.insert(0, os.getcwd()) import workdir.classes.config from qml.cv import QCV from qml.models import QXgb, QAvg, QAvgOneModelData from workdir.classes.models import qm cv = QCV(qm) # model_id = qm.add_by_params( # QXgb( # ** {"alpha": 1.0, "booster": "gbtree", "colsample_bylevel": 0.7, "colsample_bytree": 0.8, "eta": 0.004, "eval_metric": "logloss", # "gamma": 0.2, "max_depth": 4, "num_boost_round": 2015, "objective": "binary:logistic", "subsample": 0.8, "tree_method": "hist"} # ), # 'hyperopt xgb', level=-1 # ) model_id = qm.add_by_params(QAvgOneModelData(416, 2), level=-2) cv.features_sel_del( model_id, 13, early_stop_cv=lambda x: x < 0.53, # minmax log_file='workdir/logs/data13_sub_cols2.txt', exclude=[],
import datetime import numpy as np from hyperopt import hp, fmin, tpe import os import sys sys.path.insert(0, os.getcwd()) import workdir.classes.config from qml.cv import QCV from qml.models import QXgb, QAvg, QAvgOneModelData from workdir.classes.models import qm cv = QCV(qm) model_id = qm.add_by_params( QXgb( ** {"alpha": 1.0, "booster": "gbtree", "colsample_bylevel": 0.7, "colsample_bytree": 0.8, "eta": 0.004, "eval_metric": "logloss", "gamma": 0.2, "max_depth": 4, "num_boost_round": 2015, "objective": "binary:logistic", "subsample": 0.8, "tree_method": "hist"} ), 'hyperopt xgb', level=-1 ) model_id =qm.add_by_params(QAvgOneModelData(model_id, 3), level=-2) cv.features_sel_del(model_id, 66, early_stop_cv=lambda x: x>0.5414, log_file='workdir/logs/feat19.txt', exclude=[])
import datetime import numpy as np from hyperopt import hp, fmin, tpe import os import sys sys.path.insert(0, os.getcwd()) import workdir.classes.config from qml.cv import QCV from qml.models import QXgb, QAvg, QAvgOneModelData from workdir.classes.models import qm cv = QCV(qm) # model_id = qm.add_by_params( # QXgb( # ** {"alpha": 1.0, "booster": "gbtree", "colsample_bylevel": 0.7, "colsample_bytree": 0.8, "eta": 0.004, "eval_metric": "logloss", # "gamma": 0.2, "max_depth": 4, "num_boost_round": 2015, "objective": "binary:logistic", "subsample": 0.8, "tree_method": "hist"} # ), # 'hyperopt xgb', level=-1 # ) model_id =qm.add_by_params(QAvgOneModelData(416, 2), level=-2) cv.features_sel_del(model_id, 3, early_stop_cv=lambda x: x>0.53, log_file='workdir/logs/feat19.txt', exclude=['category_2_82'])
import datetime import numpy as np import os import sys sys.path.insert(0, os.getcwd()) from hyperopt import hp, fmin, tpe import workdir.classes.config from qml.cv import QCV from qml.models import QXgb, QAvg, QAvgOneModelData from workdir.classes.models import qm cv = QCV(qm) model_id = qm.add_by_params( QXgb( **{ "alpha": 0.008, "booster": "gbtree", "colsample_bylevel": 0.9, "colsample_bytree": 0.9, "eta": 0.0024, "eval_metric": "logloss", "gamma": 0.04, "max_depth": 4, "num_boost_round": 2619, "objective": "binary:logistic", "subsample": 0.7, "tree_method": "hist"
import datetime import numpy as np from hyperopt import hp, fmin, tpe import os import sys sys.path.insert(0, os.getcwd()) import workdir.classes.config from qml.cv import QCV from qml.models import QXgb, QAvg, QAvgOneModelData from workdir.classes.models import qm cv = QCV(qm) # model_id = qm.add_by_params( # QXgb( # ** {"alpha": 1.0, "booster": "gbtree", "colsample_bylevel": 0.7, "colsample_bytree": 0.8, "eta": 0.004, "eval_metric": "logloss", # "gamma": 0.2, "max_depth": 4, "num_boost_round": 2015, "objective": "binary:logistic", "subsample": 0.8, "tree_method": "hist"} # ), # 'hyperopt xgb', level=-1 # ) model_id =qm.add_by_params(QAvgOneModelData(416, 2), level=-2) cv.features_sel_del( model_id, 19, early_stop_cv=lambda x: x<0.557, # minmax log_file='workdir/logs/data19_sub_cols1.txt', exclude=[