Exemplo n.º 1
0
class Agent():
    """Interacts with and learns from the environment."""
    def __init__(self, state_size, action_size, seed):
        """Initialize an Agent object.
        
        Params
        ======
            state_size (int): dimension of each state
            action_size (int): dimension of each action
            seed (int): random seed
        """
        self.state_size = state_size
        self.action_size = action_size
        self.seed = random.seed(seed)

        # Q-Network
        self.qnetwork_local = QNetwork(state_size, action_size,
                                       seed).to(device)
        self.qnetwork_target = QNetwork(state_size, action_size,
                                        seed).to(device)
        self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=LR)

        # Replay memory
        self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, seed)
        # Initialize time step (for updating every UPDATE_EVERY steps)
        self.t_step = 0

    def step(self, state, action, reward, next_state, done):
        # Save experience in replay memory
        self.memory.add(state, action, reward, next_state, done)

        # Learn every UPDATE_EVERY time steps.
        self.t_step = (self.t_step + 1) % UPDATE_EVERY
        if self.t_step == 0:
            # If enough samples are available in memory, get random subset and learn
            if len(self.memory) > BATCH_SIZE:
                experiences = self.memory.sample()
                self.learn(experiences, GAMMA)

    def act(self, state, eps=0.0, training_mode=True):
        """Returns actions for given state as per current policy.
        
        Params
        ======
            state (array_like): current state
            eps (float): epsilon, for epsilon-greedy action selection
        """
        state = torch.from_numpy(state).float().unsqueeze(0).to(device)
        self.qnetwork_local.eval()
        with torch.no_grad():
            action_values = self.qnetwork_local(state)
        if training_mode is True:
            self.qnetwork_local.train()

        # Epsilon-greedy action selection
        if random.random() > eps:
            action = np.argmax(action_values.cpu().data.numpy())
        else:
            action = random.choice(np.arange(self.action_size))

        action = np.int32(action)
        return action

    def learn(self, experiences, gamma):
        """Update value parameters using given batch of experience tuples.

        Params
        ======
            experiences (Tuple[torch.Variable]): tuple of (s, a, r, s', done) tuples 
            gamma (float): discount factor
        """
        states, actions, rewards, next_states, dones = experiences

        # Get max predicted Q values (for next states) from target model
        Q_targets_next = self.qnetwork_target(next_states).detach().max(
            1)[0].unsqueeze(1)
        # Compute Q targets for current states
        Q_targets = rewards + (gamma * Q_targets_next * (1 - dones))

        # Get expected Q values from local model
        Q_expected = self.qnetwork_local(states).gather(1, actions)

        # Compute loss
        loss = F.mse_loss(Q_expected, Q_targets)
        # Minimize the loss
        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()

        # ------------------- update target network ------------------- #
        self.soft_update(self.qnetwork_local, self.qnetwork_target, TAU)

    def soft_update(self, local_model, target_model, tau):
        """Soft update model parameters.
        θ_target = τ*θ_local + (1 - τ)*θ_target

        Params
        ======
            local_model (PyTorch model): weights will be copied from
            target_model (PyTorch model): weights will be copied to
            tau (float): interpolation parameter 
        """
        for target_param, local_param in zip(target_model.parameters(),
                                             local_model.parameters()):
            target_param.data.copy_(tau * local_param.data +
                                    (1.0 - tau) * target_param.data)
Exemplo n.º 2
0
class DQN(object):
    def __init__(self,state_space,action_space,seed,update_every,batch_size,buffer_size,learning_rate):
        self.action_space = action_space
        self.state_space = state_space
        self.seed = random.seed(seed)
        self.batch_size = batch_size
        self.buffer_size = buffer_size
        self.learning_rate = learning_rate
        self.update_every = update_every
        
        self.qnetwork_local = QNetwork(state_space,action_space)
        self.qnetwork_target = QNetwork(state_space,action_space)
        self.optimizer = optim.Adam(self.qnetwork_local.parameters(),lr=learning_rate)
        # Initialize replaybuffer
        self.memory = ReplayBuffer(action_space,buffer_size,buffer_size,seed)
        # Initialize time step (for updating every UPDATE_EVERY steps)
        self.t_step = 0
        
    def step(self,state,action,reward,next_state,done,GAMMA):
        # Save the experience
        self.memory.add_experience(state,action,reward,next_state,done)
        
        # learn from the experience
        self.t_step = (self.t_step + 1) % self.update_every
        if self.t_step == 0:
            if len(self.memory) > self.buffer_size:
                experiences = self.memory.sample()
                self.learn(experiences,GAMMA)
        
    def act(self,state,eps=0.):
        state = torch.from_numpy(state).float().unsqueeze(0).to(device)
        self.qnetwork_local.eval()
        
        with torch.no_grad():
            action_values = self.qnetwork_local(state)
        self.qnetwork_local.train()
        
        if random.random() > eps:
            return np.argmax(action_values.cpu().data.numpy())
        else:
            return random.sample(np.arange(self.action_space))
        
    def learn(self,experiences,GAMMA):
        
        states,actions,rewards,next_states,dones = experiences
        
        target_values = self.qnetwork_target(next_states).detach().max(1)[0].unsqueeze(1)
        targets = reward + (GAMMA * target_values * (1-done))
        action_values = self.qnetwork_local(states).gather(1,actions)
        loss = F.mse_loss(action_values,targets)
        loss.backward()
        self.optimizer.step()
        soft_update(TAU)
        
    def soft_update(self,tau):
        """Soft update model parameters.
        θ_target = τ*θ_local + (1 - τ)*θ_target
        """
        for local_param,target_param in zip(self.qnetwork_local.parameters(),self.qnetwork_target.parameters()):
            local_param.data.copy_(tau*local_param.data + (1-tau)*target_param.data)
#         self.qnetwork_local.parameters() = TAU*self.qnetwork_local.parameters() + (1-TAU)*self.qnetwork_target.parameters()
class DQN_Agent():
    """ Interacts an learns from the environment. """
    def __init__(self,
                 state_size,
                 action_size,
                 seed,
                 GAMMA=GAMMA,
                 TAU=TAU,
                 LR=LR,
                 UPDATE_EVERY=UPDATE_EVERY,
                 BUFFER_SIZE=BUFFER_SIZE,
                 BATCH_SIZE=BATCH_SIZE):
        """ Initialize the agent.
        ==========
        PARAMETERS 
        ==========
            state_size (int) = observation dimension of the environment
            action_size (int) = dimension of each action
            seed (int) = random seed
        """

        self.state_size = state_size
        self.action_size = action_size
        self.seed = random.seed(seed)

        self.gamma = GAMMA
        self.tau = TAU
        self.lr = LR
        self.update_every = UPDATE_EVERY
        self.buffer_size = BUFFER_SIZE
        self.batch_size = BATCH_SIZE

        self.device = torch.device(
            "cuda:0" if torch.cuda.is_available() else "cpu")

        # instantiate online local and target network for weight updates
        self.qnetwork_local = QNetwork(state_size, action_size,
                                       seed).to(self.device)
        self.qnetwork_target = QNetwork(state_size, action_size,
                                        seed).to(self.device)
        self.optimizer = optim.Adam(self.qnetwork_local.parameters(),
                                    lr=self.lr)
        # create a replay buffer
        self.memory = ReplayBuffer(action_size, self.buffer_size,
                                   self.batch_size, seed, self.device)
        # time steps for updating target network every time t_step % 4 == 0
        self.t_step = 0

    def step(self, state, action, reward, next_state, done):
        ''' Append a SARS sequence to memory, then every update_every steps learn from experiences'''
        self.memory.add(state, action, reward, next_state, done)
        self.t_step = (self.t_step + 1) % self.update_every
        if self.t_step == 0:
            # in case enough samples are available in internal memory, sample and learn
            if len(self.memory) > self.batch_size:
                experiences = self.memory.sample()
                self.learn(experiences, self.gamma)

    def act(self, state, eps=0.):
        """ Choose action from an epsilon-greedy policy
        ==========
        PARAMETERS
        ==========
            state (array) = current state space
            eps (float) = epsilon, for epsilon-greedy action choice """
        state = torch.from_numpy(state).float().unsqueeze(0).to(self.device)
        self.qnetwork_local.eval()
        with torch.no_grad():
            action_values = self.qnetwork_local.forward(state)
        self.qnetwork_local.train()

        if random.random() > eps:
            return np.argmax(action_values.cpu().data.numpy())
        else:
            return random.choice(np.arange(self.action_size))

    def learn(self, experiences, gamma):
        """ Update the value parameters using experience tuples sampled from ReplayBuffer
        ==========
        PARAMETERS
        ==========
          experiences = Tuple of torch.Variable: SARS', done
          gamma (float) = discount factor to weight rewards
        """

        states, actions, rewards, next_states, dones = experiences

        # calculate max predicted Q values for the next states using target model
        Q_targets_next = self.qnetwork_target(next_states).detach().max(
            1)[0].unsqueeze(1)
        Q_targets = rewards + (gamma * Q_targets_next * (1 - dones))
        # calculate expected Q vaues from the local model
        Q_expected = self.qnetwork_local(states).gather(1, actions)
        # compute MSE Loss
        loss = F.mse_loss(Q_expected, Q_targets)

        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()

        self.soft_update(self.qnetwork_local, self.qnetwork_target, self.tau)

    def soft_update(self, local_model, target_model, tau):
        """ Soft update for model parameters, every update steps as defined above
        theta_target = tau * theta_local + (1-tau)*theta_target 

        ==========
        PARAMETERS 
        ==========
          local_model, target_model = PyTorch Models, weights will be copied from-to
          tau = interpolation parameter, type=float 
        """
        for target_param, local_param in zip(target_model.parameters(),
                                             local_model.parameters()):
            target_param.data.copy_(self.tau * local_param.data +
                                    (1.0 - self.tau) * target_param.data)