Exemplo n.º 1
0
def magnus_m6(a, dt, time):
    """
    Construct a magnus expasion of `a` of order six.
    
    References:
    [1] https://arxiv.org/abs/1709.06483

    Arguments:
    a :: (time :: float) -> ndarray (a_shape)
        - the matrix to expand
    dt :: float - the time step
    time :: float - the current time

    Returns:
    m6 :: ndarray (a_shape) - magnus expansion
    """
    t1 = time + dt * _M6_C1
    t2 = time + dt * _M6_C2
    t3 = time + dt * _M6_C3
    a1 = a(t1)
    a2 = a(t2)
    a3 = a(t3)
    b1 = dt * a2
    b2 = _M6_F0 * dt * (a3 - a1)
    b3 = _M6_F1 * dt * (a3 - 2 * a2 + a1)
    b1_b2_commutator = commutator(b1, b2)
    m6 = (b1 + _M6_F2 * b3 + _M6_F3 *
          commutator(-20 * b1 - b3 + b1_b2_commutator,
                     b2 - _M6_F4 * commutator(b1, 2 * b3 + b1_b2_commutator)))
    return m6
Exemplo n.º 2
0
def get_lindbladian(
    densities,
    dissipators=None,
    hamiltonian=None,
    operators=None,
):
    """
    Compute the action of the lindblad equation on a single (set of)
    density matrix (matrices). This implementation uses the definiton:
    https://en.wikipedia.org/wiki/Lindbladian.

    Args:
    densities :: ndarray - the probability density matrices
    dissipators :: ndarray - the lindblad dissipators
    hamiltonian :: ndarray
    operators :: ndarray - the lindblad operators
    operation_policy :: qoc.OperationPolicy - how computations should be
        performed, e.g. CPU, GPU, sparse, etc.

    Returns:
    lindbladian :: ndarray - the lindbladian operator acting on the densities
    """
    if hamiltonian is not None:
        lindbladian = -1j * commutator(
            hamiltonian,
            densities,
        )
    else:
        lindbladian = 0

    if dissipators is not None and operators is not None:
        operators_dagger = conjugate_transpose(operators, )
        operators_product = matmuls(
            operators_dagger,
            operators,
        )
        for i, operator in enumerate(operators):
            dissipator = dissipators[i]
            operator_dagger = operators_dagger[i]
            operator_product = operators_product[i]
            lindbladian = (lindbladian + (dissipator * (matmuls(
                operator,
                densities,
                operator_dagger,
            ) - 0.5 * matmuls(
                operator_product,
                densities,
            ) - 0.5 * matmuls(
                densities,
                operator_product,
            ))))
        #ENDFOR
    #ENDIF
    return lindbladian
Exemplo n.º 3
0
def magnus_m6(a1, a2, a3, dt, operation_policy=OperationPolicy.CPU):
    """
    a magnus expansion method of order six
    as seen in https://arxiv.org/abs/1709.06483
    Args:
    a1 :: numpy.ndarray - see paper
    a2 :: numpy.ndarray - see paper
    a3 :: numpy.ndarray - see paper
    dt :: float - see paper
    Returns:
    m6 :: numpy.ndarray - magnus expansion
    """
    b1 = dt * a2
    b2 = _M6_C0 * dt * (a3 - a1)
    b3 = _M6_C1 * dt * (a3 - 2 * a2 + a1)
    b1_b2_commutator = commutator(b1, b2, operation_policy=operation_policy)
    return (b1 + _M6_C2 * b3 + _M6_C3 * commutator(
        -20 * b1 - b3 + b1_b2_commutator,
        b2 - _M6_C4 * commutator(
            b1, 2 * b3 + b1_b2_commutator, operation_policy=operation_policy),
        operation_policy=operation_policy))
Exemplo n.º 4
0
def magnus_m4(a1, a2, dt, operation_policy=OperationPolicy.CPU):
    """
    a magnus expansion method of order four
    as seen in https://arxiv.org/abs/1709.06483
    Args:
    a1 :: numpy.ndarray - see paper
    a2 :: numpy.ndarray - see paper
    dt :: float - see paper
    operation_policy

    Returns:
    m4 :: numpy.ndarray - magnus expansion
    """
    return ((dt / 2) * (a1 + a2) + _M4_C0 * np.power(dt, 2) *
            commutator(a2, a1, operation_policy=operation_policy))
Exemplo n.º 5
0
def magnus_m4(a, dt, time):
    """
    Construct a magnus expasion of `a` of order four.
    
    References:
    [1] https://arxiv.org/abs/1709.06483

    Arguments:
    a :: (time :: float) -> ndarray (a_shape)
        - the matrix to expand
    dt :: float - the time step
    time :: float - the current time

    Returns:
    m4 :: ndarray (a_shape) - magnus expansion
    """
    t1 = time + dt * _M4_C1
    t2 = time + dt * _M4_C2
    a1 = a(t1)
    a2 = a(t2)
    m4 = ((dt / 2) * (a1 + a2) + _M4_F0 * (dt**2) * commutator(a2, a1))
    return m4