Exemplo n.º 1
0
def findEvents(symbols, startday,endday, marketSymbol,verbose=False):

	# Reading the Data for the list of Symbols.
	timeofday=dt.timedelta(hours=16)
	timestamps = du.getSSEdays(startday,endday,timeofday)
	dataobj = da.DataAccess('Yahoo')
	if verbose:
            print __name__ + " reading data"
	# Reading the Data
	close = dataobj.get_data(timestamps, symbols, closefield)
	
	# Completing the Data - Removing the NaN values from the Matrix
	close = (close.fillna(method='ffill')).fillna(method='backfill')
	

	# Calculating Daily Returns for the Market
	#tsu.returnize0(close.values)
	SPYValues=close[marketSymbol]

	# Calculating the Returns of the Stock Relative to the Market
	# So if a Stock went up 5% and the Market rised 3%. The the return relative to market is 2%
	mktneutDM = close
	np_eventmat = copy.deepcopy(mktneutDM)
    	for sym in symbols:
            for time in timestamps:
                np_eventmat[sym][time]=np.NAN

	if verbose:
            print __name__ + " finding events"

	# Generating the Event Matrix
	# Event described is : Market falls more than 3% plus the stock falls 5% more than the Market
	# Suppose : The market fell 3%, then the stock should fall more than 8% to mark the event.
	# And if the market falls 5%, then the stock should fall more than 10% to mark the event.
    	output = open(output_flie, 'w')
	output_content = []
	for i in range(1,len(timestamps)):
	    for symbol in symbols:


	        if  close[symbol][i-1] >= 7 and close[symbol][i] < 7 : # When market fall is more than 3% and also the stock compared to market is also fell by more than 5%.
             		np_eventmat[symbol][i] = 1.0  #overwriting by the bit, marking the event
                    	buy_date = timestamps[i]
                        if i+5 < len(mktneutDM[symbol]):
                    		sell_date = timestamps[i+5];
                        else:
                                sell_date = timestamps[-1];
			output_line = []
			output_line.append(buy_date);
			output_line.append(symbol)
			output_line.append("Buy")
                        output_line.append(100)
			output_content.append(output_line)
			output_line = []
			output_line.append(sell_date);
			output_line.append(symbol)
			output_line.append("Sell")
                        output_line.append(100)
			output_content.append(output_line)
        output_content = sorted(output_content, key = lambda x: x[0])
        for item in output_content:
	    d = item[0];
	    line = str(d.year) + ","+ str(d.month) + "," + str(d.day) + ","
            line += item[1] + ","
            line += item[2] + "," + str(item[3])+"\n"
            output.write(line)

	output.close()

	return np_eventmat
Exemplo n.º 2
0
def findEvents(symbols, startday, endday, marketSymbol, verbose=False):

    # Reading the Data for the list of Symbols.
    timeofday = dt.timedelta(hours=0)
    timestamps = du.getSSEdays(startday, endday, timeofday)
    dataobj = da.DataAccess('Yahoo')
    if verbose:
        print __name__ + " reading data"
    # Reading the Data
    close = dataobj.get_data(timestamps, symbols, closefield)
    for sym in symbols:
        print sym

    # Completing the Data - Removing the NaN values from the Matrix
    #close = (close.fillna(method='ffill')).fillna(method='backfill')
    #print close['SPY'][0], close['SPY'][1]

    # Calculating Daily Returns for the Market
    #tsu.returnize0(close.values)
    SPYValues = close[marketSymbol]

    # Calculating the Returns of the Stock Relative to the Market
    # So if a Stock went up 5% and the Market rised 3%. The the return relative to market is 2%
    mktneutDM = close
    np_eventmat = copy.deepcopy(mktneutDM)
    for sym in symbols:
        for time in timestamps:
            np_eventmat[sym][time] = np.NAN

    if verbose:
        print __name__ + " finding events"

    # Generating the Event Matrix
    # Event described is : Market falls more than 3% plus the stock falls 5% more than the Market
    # Suppose : The market fell 3%, then the stock should fall more than 8% to mark the event.
    # And if the market falls 5%, then the stock should fall more than 10% to mark the event.
    output = open(output_flie, 'w')
    output_content = []
    for i in range(1, len(timestamps)):
        for symbol in symbols:

            if close[symbol][i - 1] >= 7 and close[symbol][
                    i] < 7:  # When market fall is more than 3% and also the stock compared to market is also fell by more than 5%.
                np_eventmat[symbol][
                    i] = 1.0  #overwriting by the bit, marking the event
                buy_date = timestamps[i]
                if i + 5 < len(mktneutDM[symbol]):
                    sell_date = timestamps[i + 5]
                else:
                    sell_date = timestamps[-1]
                output_line = []
                output_line.append(buy_date)
                output_line.append(symbol)
                output_line.append("Buy")
                output_line.append(100)
                output_content.append(output_line)
                output_line = []
                output_line.append(sell_date)
                output_line.append(symbol)
                output_line.append("Sell")
                output_line.append(100)
                output_content.append(output_line)
    output_content = sorted(output_content, key=lambda x: x[0])
    for item in output_content:
        d = item[0]
        line = str(d.year) + "," + str(d.month) + "," + str(d.day) + ","
        line += item[1] + ","
        line += item[2] + "," + str(item[3]) + "\n"
        output.write(line)

    output.close()

    return np_eventmat
Exemplo n.º 3
0
    item.append(date)
    item.append(trade_data[3])
    item.append(trade_data[4])
    item.append(int(trade_data[5]))
    trades.append(item)
    symbols.append(trade_data[3])
print trades
#startday = dt.datetime(2011,1,1)
#endday = dt.datetime(2012,12,26)
startday = trades[0][0]
endday = trades[-1][0]
"""step2 read history data"""
symbols = set(symbols)
dataobj = da.DataAccess('Yahoo')
timeofday = dt.timedelta(hours=16)
timestamps = du.getSSEdays(startday, endday, timeofday)
close = dataobj.get_data(timestamps, symbols, closefield)
close = (close.fillna(method='ffill')).fillna(method='backfill')

"""step 3 caculate value"""
values = {}
for item in timestamps:
    values[item] = cash

stock = {}
for sym in symbols:
    stock[sym] = 0
trade_t = startday
for i in range(len(trades)):
    t = trades[i]
    t_next = t