Exemplo n.º 1
0
from numpy import *
import matplotlib.pylab as plt
from quadLSQ import quadLSQ

#Linear function, derivation p. 162, equation 5.58 p. 163.

t = linspace(1,5,5)
y = array([55.2, 44.9, 37.9, 35.3, 30.1])


alpha,beta = quadLSQ(t,y)
print 'Linear approximation: y = %.2f %.2ft' %(alpha,beta)

def linear(t):
	return alpha + beta*t

# c)
z = log(y)

# d)
gamma,beta2 = quadLSQ(t,z)
alpha2 = exp(gamma)
print 'Exp approximation: y = %.2f exp(%.2ft)' %(alpha2,beta2)
def expLS(t):
	return alpha2*exp(beta2*t)

T = linspace(1,5,501)

plt.plot(t,y,'o',T,linear(T),T,expLS(T))
plt.legend(['data','app 1','app2'])
plt.show()
Exemplo n.º 2
0
from numpy import *

from quadLSQ import quadLSQ

n = array([65536*i for i in [1,2,4,8,16]])

Tn = array([0.048755, 0.097074, 0.194003, 0.386721, 0.771487])

a,b = quadLSQ(n,Tn)

print 'Linear approximation: T(n) = %g + %gn'%(a,b)

def T(n):
	return a+b*n


#b) Sending a vector of length 0 still takes time

#c) 

double = 64

print (double/b)*10**(-9)
Exemplo n.º 3
0
from numpy import *
from quadLSQ import quadLSQ

n = linspace(100, 400, 4)  # NOTE: n measured in thousands
CPU = array([0.05, 0.09, 0.13, 0.18])

a, b = quadLSQ(n, CPU)

print "Linear approximation: c(n) = %g + %g n " % (a, b)


def CPUtime(n):
    return a + b * n


print "n = 10^6 --> estimated CPU time: %.2f " % CPUtime(10 ** 6)
print "n = 10^7 --> estimated CPU time: %.2f " % CPUtime(10 ** 7)