Exemplo n.º 1
0
def test_scatter_add(backend):
    x = zeros(backend, (3, 3))
    y = ones(backend, (2, 3))
    indices = to_array(backend, [0, 2])

    z = scatter_add(backend, x, indices, y, 0)
    assert np.isclose(z[0, 0], 1.0)
    assert np.isclose(z[1, 0], 0.0)
    assert np.isclose(z[2, 0], 1.0)

    x = zeros(backend, (3, 3))
    y = ones(backend, (3, 2))
    z = scatter_add(backend, x, indices, y, 1)
    assert np.isclose(z[0, 0], 1.0)
    assert np.isclose(z[0, 1], 0.0)
    assert np.isclose(z[0, 2], 1.0)
Exemplo n.º 2
0
def add(y_pdf_1, bins_1, y_pdf_2, bins_2, bins_out, bin_axis=1):
    """
    Calculate the discretized PDF of the sum of two random variables
    represented by their respective discretized PDFs.

    Args:
        y_pdf_1: The discretized PDF of the first random variable.
        bins_1: The bin boundaries corresponding to 'y_pdf_1'.
        y_pdf_2: The discretized PDF of the second random variable.
        bins_2: The bin boundaries corresponding to 'y_pdf_2'.
        bins_out: The bins boundaries for the resulting discretized PDF.
        bin_axis: The dimension along which the probabilities are
            oriented.

    Return:

        A tensor containing the discretized PDF corresponding to the sum of
        the two given PDFs.
    """
    if len(y_pdf_1.shape) == 1:
        bin_axis = 0
    xp = get_array_module(y_pdf_1)

    bins_1_c = 0.5 * (bins_1[1:] + bins_1[:-1])
    dx_1 = bins_1[1:] - bins_1[:-1]
    shape_1 = [1] * len(y_pdf_1.shape)
    shape_1[bin_axis] = numel(bins_1) - 1
    dx_1 = dx_1.reshape(shape_1)
    p_1 = y_pdf_1 * dx_1

    bins_2_c = 0.5 * (bins_2[1:] + bins_2[:-1])
    dx_2 = bins_2[1:] - bins_2[:-1]
    shape_2 = [1] * len(y_pdf_2.shape)
    shape_2[bin_axis] = numel(bins_2) - 1
    dx_2 = dx_2.reshape(shape_2)
    p_2 = y_pdf_2 * dx_2

    out_shape = list(y_pdf_1.shape)
    out_shape[bin_axis] = numel(bins_out) - 1
    p_out = zeros(xp, out_shape, like=y_pdf_1)

    rank = len(y_pdf_1.shape)
    selection = [slice(0, None)] * rank

    n_bins = numel(bins_1_c)
    offsets = sample_uniform(xp, (n_bins,), like=bins_2)
    for i in range(n_bins):
        d_b = bins_1[i + 1] - bins_1[i]
        b = bins_1[i] + offsets[i] * d_b
        selection[bin_axis] = i
        bins = bins_2_c + b
        probs = p_1[tuple(selection)] * p_2
        inds = digitize(xp, bins, bins_out) - 1
        p_out = scatter_add(xp, p_out, inds, probs, bin_axis)

    return normalize(p_out, bins_out, bin_axis=bin_axis)
Exemplo n.º 3
0
def sample_posterior(y_pred, bins, n_samples=1, bin_axis=1):
    """
    Sample the posterior distribution described by the predicted PDF.

    The sampling is performed by interpolating the inverse of the cumulative
    distribution function to value sampled from a uniform distribution.

    Args:
        y_pred: A rank-k tensor containing the predicted bin-probabilities
            along the axis specified by ``quantile_axis``.
        bins: The bin bounrdaries corresponding to the predicted
            bin probabilities.
        n_samples: How many samples to generate for each prediction.
        bin_axis: The axis in y_pred along which the predicted bin
             probabilities are located.

    Returns:
        A rank-k tensor with the values along ``bin_axis`` replaced by
        samples of the posterior distribution.
    """
    if len(y_pred.shape) == 1:
        bin_axis = 0
    xp = get_array_module(y_pred)
    n_dims = len(y_pred.shape)
    y_cdf = posterior_cdf(y_pred, bins, bin_axis=bin_axis)

    n_bins = len(bins)

    output_shape = list(y_cdf.shape)
    output_shape[bin_axis] = n_samples
    results = zeros(xp, output_shape, like=y_pred)

    y_index = [slice(0, None)] * n_dims
    y_index[bin_axis] = slice(0, 1)
    y_l = y_cdf[tuple(y_index)]
    b_l = bins[0]

    samples = as_type(xp, sample_uniform(xp, tuple(output_shape)), y_cdf)

    for i in range(1, n_bins):
        y_index = [slice(0, None)] * n_dims
        y_index[bin_axis] = slice(i, i + 1)
        y_r = y_cdf[tuple(y_index)]
        b_r = bins[i]

        mask = as_type(xp, (y_l < samples) * (y_r >= samples), y_l)
        results += b_l * (y_r - samples) * mask
        results += b_r * (samples - y_l) * mask
        results /= mask * (y_r - y_l) + (1.0 - mask)

        b_l = b_r
        y_l = y_r

    mask = as_type(xp, y_r < samples, y_r)
    results += mask * b_r
    return results
Exemplo n.º 4
0
def probability_less_than(y_pred, quantiles, y, quantile_axis=1):
    """
    Calculate the probability that the predicted value is less
    than a given threshold value ``y`` given a tensor of predicted
    quantiles ``y_pred``.

    The probability :math:`P(Y > y)` is calculated by using the predicted
    quantiles to estimate the CDF of the posterior distribution, which
    is then interpolate to the given threshold value.

    Args:
        y_pred: A rank-k tensor containing the predicted quantiles along the
            axis specified by ``quantile_axis``.
        quantiles: The quantile fractions corresponding to the predicted
            quantiles.
        y: The threshold value.
        quantile_axis: The axis in y_pred along which the predicted quantiles
             are found.

    Returns:
         A rank-(k-1) tensor containing for each set of predicted quantiles the
         estimated probability of the true value being larger than the given
         threshold.
    """
    if len(y_pred.shape) == 1:
        quantile_axis = 0
    xp = get_array_module(y_pred)
    n_dims = len(y_pred.shape)
    x_cdf, y_cdf = cdf(y_pred, quantiles, quantile_axis=quantile_axis)

    output_shape = list(x_cdf.shape)
    del output_shape[quantile_axis]
    probabilities = zeros(xp, output_shape, like=y_pred)

    y_l = y_cdf[0]
    x_index = [slice(0, None)] * n_dims
    x_index[quantile_axis] = 0
    x_l = x_cdf[tuple(x_index)]

    for i in range(1, len(y_cdf)):
        y_r = y_cdf[i]
        x_index[quantile_axis] = i
        x_r = x_cdf[tuple(x_index)]

        mask = as_type(xp, (x_l < y) * (x_r >= y), x_l)
        probabilities += y_l * (x_r - y) * mask
        probabilities += y_r * (y - x_l) * mask
        probabilities /= mask * (x_r - x_l) + (1.0 - mask)

        y_l = y_r
        x_l = x_r

    mask = as_type(xp, x_r < y, x_r)
    probabilities += mask
    return probabilities
Exemplo n.º 5
0
def sample_posterior(y_pred, quantiles, n_samples=1, quantile_axis=1):
    """
    Sample the posterior distribution described by the predicted quantiles.

    The sampling is performed by interpolating the inverse of the cumulative
    distribution function to value sampled from a uniform distribution.

    Args:
        y_pred: A rank-k tensor containing the predicted quantiles along the
            axis specified by ``quantile_axis``.
        quantiles: The quantile fractions corresponding to the predicted
            quantiles.
        n_samples: How many samples to generate for each prediction.
        quantile_axis: The axis in y_pred along which the predicted quantiles
             are found.

    Returns:
        A rank-k tensor with the values along ``quantile_axis`` replaced by
        samples of the posterior distribution.
    """
    if len(y_pred.shape) == 1:
        quantile_axis = 0
    xp = get_array_module(y_pred)
    n_dims = len(y_pred.shape)
    x_cdf, y_cdf = cdf(y_pred, quantiles, quantile_axis=quantile_axis)

    output_shape = list(y_pred.shape)
    output_shape[quantile_axis] = n_samples

    samples = as_type(xp, sample_uniform(xp, tuple(output_shape)), y_cdf)
    results = zeros(xp, samples.shape, like=y_pred)

    y_l = y_cdf[0]
    x_index = [slice(0, None)] * n_dims
    x_index[quantile_axis] = slice(0, 1)
    x_l = x_cdf[tuple(x_index)]

    for i in range(1, len(y_cdf)):
        y_r = y_cdf[i]
        x_index[quantile_axis] = slice(i, i + 1)
        x_r = x_cdf[tuple(x_index)]

        mask = as_type(xp, (samples > y_l) * (samples <= y_r), y_l)
        results += (x_l * (y_r - samples)) * mask
        results += (x_r * (samples - y_l)) * mask
        results /= mask * (y_r - y_l) + (1.0 - mask)

        y_l = y_r
        x_l = x_r

    return results
Exemplo n.º 6
0
def quantile_loss(y_pred, quantiles, y_true, quantile_axis=1):
    """
    Calculate the quantile loss for all predicted quantiles.

    Args:
        y_pred: A k-tensor containing the predicted quantiles along the
             axis specified by ``quantile_axis``.
        y_true: A tensor of rank k-1 containing the corresponding true
             values.
        quantiles: A vector or list containing the quantile fractions
             corresponding to the predicted quantiles.
        quantile_axis: The axis along which ``y_pred`` contains the
             the predicted quantiles.
    """
    if len(y_pred.shape) == 1:
        quantile_axis = 0
    xp = get_array_module(y_pred)
    n_dims = len(y_pred.shape)

    y_true_shape = list(y_pred.shape)
    y_true_shape[quantile_axis] = 1
    try:
        y_true = reshape(xp, y_true, y_true_shape)
    except Exception:
        raise InvalidDimensionException(
            "Could not reshape 'y_true' argument into expected shape "
            f"{y_true_shape}."
        )

    quantiles = to_array(xp, quantiles)
    quantiles_shape = [1] * n_dims
    quantiles_shape[quantile_axis] = len(quantiles)
    quantiles = reshape(xp, quantiles, quantiles_shape)

    dy = y_pred - y_true
    loss = zeros(xp, dy.shape, like=y_pred)
    mask = as_type(xp, dy > 0.0, dy)
    loss += mask * ((1.0 - quantiles) * dy)
    loss += -(1.0 - mask) * (quantiles * dy)
    return loss
Exemplo n.º 7
0
def test_zeros(backend):
    x = zeros(backend, (1, 1))
    assert x[0, 0] == 0.0
Exemplo n.º 8
0
def crps(y_pred, y_true, quantiles, quantile_axis=1):
    r"""
    Compute the Continuous Ranked Probability Score (CRPS) for given
    predicted quantiles.

    This function uses a piece-wise linear fit to the approximate posterior
    CDF obtained from the predicted quantiles in :code:`y_pred` to
    approximate the continuous ranked probability score (CRPS):

    .. math::
        CRPS(\mathbf{y}, x) = \int_{-\infty}^\infty (F_{x | \mathbf{y}}(x')
        - \mathrm{1}_{x < x'})^2 \: dx'

    Args:

        y_pred: Tensor containing the predicted quantiles along the axis
                specified by ``quantile_axis``.

        y_true: Array containing the true point values.

        quantiles: 1D array containing the quantile fractions corresponding
            corresponding to the predicted quantiles.


    Returns:

        Tensor of rank :math:`k - 1` containing the CRPS values for each of the
        predictions in ``y_pred``.
    """
    if len(y_pred.shape) == 1:
        quantile_axis = 0
    xp = get_array_module(y_pred)
    n_dims = len(y_pred.shape)

    x_cdf, y_cdf = cdf(y_pred, quantiles, quantile_axis=quantile_axis)

    y_true_shape = list(x_cdf.shape)
    y_true_shape[quantile_axis] = 1
    y_true = to_array(xp, y_true)
    y_true = reshape(xp, y_true, y_true_shape)

    mask = as_type(xp, x_cdf > y_true, y_pred)
    ind = ones(xp, x_cdf.shape, like=y_pred) * mask

    output_shape = list(x_cdf.shape)
    del output_shape[quantile_axis]
    integral = zeros(xp, output_shape, like=y_pred)
    x_index = [slice(0, None)] * n_dims

    y_l = y_cdf[0]
    x_index[quantile_axis] = 0
    x_l = x_cdf[tuple(x_index)]
    ind_l = ind[tuple(x_index)]

    for i in range(1, len(y_cdf)):

        y_r = y_cdf[i]
        x_index[quantile_axis] = i
        x_r = x_cdf[tuple(x_index)]
        ind_r = ind[tuple(x_index)]

        result = (ind_l - y_l) ** 2
        result += (ind_r - y_r) ** 2
        dx = x_r - x_l
        result *= 0.5 * dx
        integral += result

        y_l = y_r
        x_l = x_r
        ind_l = ind_r

    return integral
Exemplo n.º 9
0
def cdf(y_pred, quantiles, quantile_axis=1):
    """
    Calculates the cumulative distribution function (CDF) from predicted
    quantiles.

    Args:
        y_pred: Array containing a range of predicted quantiles. The array
            is expected to contain the quantiles along the axis given by
            ``quantile_axis.``
        quantiles: Array containing quantile fraction corresponding to the
            the predicted quantiles.
        quantile_axis: The index of the axis f the ``y_pred`` array, along
            which the quantiles are found.

    Returns:
        Tuple ``(x_cdf, y_cdf)`` of x and corresponding y-values of the CDF
        corresponding to quantiles given by ``y_pred``.

    Raises:

        InvalidArrayTypeException: When the data is provided neither as
             numpy array nor as torch tensor.

        InvalidDimensionException: When the provided predicted quantiles do
             not match the provided number of quantiles.
    """
    if len(y_pred.shape) == 1:
        quantile_axis = 0
    if y_pred.shape[quantile_axis] != len(quantiles):
        raise InvalidDimensionException(
            "Dimensions of the provided array 'y_pred' do not match the"
            "provided number of quantiles."
        )

    output_shape = list(y_pred.shape)
    xp = get_array_module(y_pred)

    y_cdf = quantiles

    y_cdf = concatenate(
        xp, [zeros(xp, 1, like=y_cdf), y_cdf, ones(xp, 1, like=y_cdf)], 0
    )

    selection = [slice(0, None)] * len(y_pred.shape)
    selection_c = copy(selection)
    selection_c[quantile_axis] = 0
    selection_c = tuple(selection_c)
    selection_r = copy(selection)
    selection_r[quantile_axis] = 1
    selection_r = tuple(selection_r)
    dx = y_pred[selection_r] - y_pred[selection_c]
    dx /= quantiles[1] - quantiles[0]
    x_cdf_l = y_pred[selection_c] - 2.0 * quantiles[0] * dx
    x_cdf_l = expand_dims(xp, x_cdf_l, quantile_axis)

    selection_l = copy(selection)
    selection_l[quantile_axis] = -2
    selection_l = tuple(selection_l)
    selection_c = copy(selection)
    selection_c[quantile_axis] = -1
    selection_c = tuple(selection_c)
    dx = y_pred[selection_c] - y_pred[selection_l]
    dx /= quantiles[-1] - quantiles[-2]
    x_cdf_r = y_pred[selection_c] + 2.0 * (1.0 - quantiles[-1]) * dx
    x_cdf_r = expand_dims(xp, x_cdf_r, quantile_axis)

    x_cdf = concatenate(xp, [x_cdf_l, y_pred, x_cdf_r], quantile_axis)

    return x_cdf, y_cdf