Exemplo n.º 1
0
def _pseudo_inverse_dense(L, rhoss, w=None, **pseudo_args):
    """
    Internal function for computing the pseudo inverse of an Liouvillian using
    dense matrix methods. See pseudo_inverse for details.
    """
    rho_vec = np.transpose(mat2vec(rhoss.full()))

    tr_mat = tensor([identity(n) for n in L.dims[0][0]])
    tr_vec = np.transpose(mat2vec(tr_mat.full()))
    N = np.prod(L.dims[0][0])
    I = np.identity(N * N)
    P = np.kron(np.transpose(rho_vec), tr_vec)
    Q = I - P

    if w is None:
        L = L
    else:
        L = 1.0j * w * spre(tr_mat) + L
        # It's possible that there's an error here!

    if pseudo_args['method'] == 'direct':
        try:
            LIQ = np.linalg.solve(L.full(), Q)
        except:
            LIQ = np.linalg.lstsq(L.full(), Q)[0]

        R = np.dot(Q, LIQ)

        return Qobj(R, dims=L.dims)

    elif pseudo_args['method'] == 'numpy':
        return Qobj(np.dot(Q, np.dot(np.linalg.pinv(L.full()), Q)), dims=L.dims)

    elif pseudo_args['method'] == 'scipy':
        # return Qobj(la.pinv(L.full()), dims=L.dims)
        return Qobj(np.dot(Q, np.dot(la.pinv(L.full()), Q)), dims=L.dims)

    elif pseudo_args['method'] == 'scipy2':
        # return Qobj(la.pinv2(L.full()), dims=L.dims)
        return Qobj(np.dot(Q, np.dot(la.pinv2(L.full()), Q)), dims=L.dims)

    else:
        raise ValueError("Unsupported method '%s'. Use 'direct' or 'numpy'" %
                         method)
Exemplo n.º 2
0
def _pseudo_inverse_sparse(L, rhoss, w=None, **pseudo_args):
    """
    Internal function for computing the pseudo inverse of an Liouvillian using
    sparse matrix methods. See pseudo_inverse for details.
    """

    N = np.prod(L.dims[0][0])

    rhoss_vec = operator_to_vector(rhoss)

    tr_op = tensor([identity(n) for n in L.dims[0][0]])
    tr_op_vec = operator_to_vector(tr_op)

    P = zcsr_kron(rhoss_vec.data, tr_op_vec.data.T)
    I = sp.eye(N * N, N * N, format='csr')
    Q = I - P

    if w is None:
        L = 1.0j * (1e-15) * spre(tr_op) + L
    else:
        if w != 0.0:
            L = 1.0j * w * spre(tr_op) + L
        else:
            L = 1.0j * (1e-15) * spre(tr_op) + L

    if pseudo_args['use_rcm']:
        perm = reverse_cuthill_mckee(L.data)
        A = sp_permute(L.data, perm, perm)
        Q = sp_permute(Q, perm, perm)
    else:
        if not settings.has_mkl:
            A = L.data.tocsc()
            A.sort_indices()

    if pseudo_args['method'] == 'splu':
        if settings.has_mkl:
            A = L.data.tocsr()
            A.sort_indices()
            LIQ = mkl_spsolve(A, Q.toarray())
        else:

            lu = sp.linalg.splu(A, permc_spec=pseudo_args['permc_spec'],
                                diag_pivot_thresh=pseudo_args['diag_pivot_thresh'],
                                options=dict(ILU_MILU=pseudo_args['ILU_MILU']))
            LIQ = lu.solve(Q.toarray())

    elif pseudo_args['method'] == 'spilu':

        lu = sp.linalg.spilu(A, permc_spec=pseudo_args['permc_spec'],
                             fill_factor=pseudo_args['fill_factor'],
                             drop_tol=pseudo_args['drop_tol'])
        LIQ = lu.solve(Q.toarray())

    else:
        raise ValueError("unsupported method '%s'" % method)

    R = sp.csr_matrix(Q * LIQ)

    if pseudo_args['use_rcm']:
        rev_perm = np.argsort(perm)
        R = sp_permute(R, rev_perm, rev_perm, 'csr')

    return Qobj(R, dims=L.dims)
Exemplo n.º 3
0
def _generic_ode_solve(r, rho0, tlist, e_ops, opt, progress_bar):
    """
    Internal function for solving ME. Solve an ODE which solver parameters
    already setup (r). Calculate the required expectation values or invoke
    callback function at each time step.
    """

    #
    # prepare output array
    #
    n_tsteps = len(tlist)
    e_sops_data = []

    output = Result()
    output.solver = "mesolve"
    output.times = tlist

    if opt.store_states:
        output.states = []

    if isinstance(e_ops, types.FunctionType):
        n_expt_op = 0
        expt_callback = True

    elif isinstance(e_ops, list):

        n_expt_op = len(e_ops)
        expt_callback = False

        if n_expt_op == 0:
            # fall back on storing states
            output.states = []
            opt.store_states = True
        else:
            output.expect = []
            output.num_expect = n_expt_op
            for op in e_ops:
                e_sops_data.append(spre(op).data)
                if op.isherm and rho0.isherm:
                    output.expect.append(np.zeros(n_tsteps))
                else:
                    output.expect.append(np.zeros(n_tsteps, dtype=complex))

    else:
        raise TypeError("Expectation parameter must be a list or a function")

    #
    # start evolution
    #
    progress_bar.start(n_tsteps)

    rho = Qobj(rho0)

    dt = np.diff(tlist)
    for t_idx, t in enumerate(tlist):
        progress_bar.update(t_idx)

        if not r.successful():
            raise Exception("ODE integration error: Try to increase "
                            "the allowed number of substeps by increasing "
                            "the nsteps parameter in the Options class.")

        if opt.store_states or expt_callback:
            rho.data = dense2D_to_fastcsr_fmode(vec2mat(r.y), rho.shape[0], rho.shape[1])

            if opt.store_states:
                output.states.append(Qobj(rho, isherm=True))

            if expt_callback:
                # use callback method
                e_ops(t, rho)

        for m in range(n_expt_op):
            if output.expect[m].dtype == complex:
                output.expect[m][t_idx] = expect_rho_vec(e_sops_data[m],
                                                         r.y, 0)
            else:
                output.expect[m][t_idx] = expect_rho_vec(e_sops_data[m],
                                                         r.y, 1)

        if t_idx < n_tsteps - 1:
            r.integrate(r.t + dt[t_idx])

    progress_bar.finished()

    if (not opt.rhs_reuse) and (config.tdname is not None):
        _cython_build_cleanup(config.tdname)

    if opt.store_final_state:
        rho.data = dense2D_to_fastcsr_fmode(vec2mat(r.y), rho.shape[0], rho.shape[1])
        output.final_state = Qobj(rho, dims=rho0.dims, isherm=True)

    return output
Exemplo n.º 4
0
def _mesolve_func_td(L_func, rho0, tlist, c_op_list, e_ops, args, opt,
                     progress_bar):
    """
    Evolve the density matrix using an ODE solver with time dependent
    Hamiltonian.
    """

    if debug:
        print(inspect.stack()[0][3])

    #
    # check initial state
    #
    if isket(rho0):
        rho0 = ket2dm(rho0)

    #
    # construct liouvillian
    #
    new_args = None

    if len(c_op_list) > 0:
        L_data = liouvillian(None, c_op_list).data
    else:
        n, m = rho0.shape
        if issuper(rho0):
            L_data = sp.csr_matrix((n, m), dtype=complex)
        else:
            L_data = sp.csr_matrix((n ** 2, m ** 2), dtype=complex)

    if type(args) is dict:
        new_args = {}
        for key in args:
            if isinstance(args[key], Qobj):
                if isoper(args[key]):
                    new_args[key] = (
                        -1j * (spre(args[key]) - spost(args[key])))
                else:
                    new_args[key] = args[key]
            else:
                new_args[key] = args[key]

    elif type(args) is list or type(args) is tuple:
        new_args = []
        for arg in args:
            if isinstance(arg, Qobj):
                if isoper(arg):
                    new_args.append((-1j * (spre(arg) - spost(arg))).data)
                else:
                    new_args.append(arg.data)
            else:
                new_args.append(arg)

        if type(args) is tuple:
            new_args = tuple(new_args)
    else:
        if isinstance(args, Qobj):
            if isoper(args):
                new_args = (-1j * (spre(args) - spost(args)))
            else:
                new_args = args
        else:
            new_args = args

    #
    # setup integrator
    #
    initial_vector = mat2vec(rho0.full()).ravel('F')
    if issuper(rho0):
        if not opt.rhs_with_state:
            r = scipy.integrate.ode(_ode_super_func_td)
        else:
            r = scipy.integrate.ode(_ode_super_func_td_with_state)
    else:
        if not opt.rhs_with_state:
            r = scipy.integrate.ode(cy_ode_rho_func_td)
        else:
            r = scipy.integrate.ode(_ode_rho_func_td_with_state)
    r.set_integrator('zvode', method=opt.method, order=opt.order,
                     atol=opt.atol, rtol=opt.rtol, nsteps=opt.nsteps,
                     first_step=opt.first_step, min_step=opt.min_step,
                     max_step=opt.max_step)
    r.set_initial_value(initial_vector, tlist[0])
    r.set_f_params(L_data, L_func, new_args)

    #
    # call generic ODE code
    #
    return _generic_ode_solve(r, rho0, tlist, e_ops, opt, progress_bar)
Exemplo n.º 5
0
def _mesolve_list_str_td(H_list, rho0, tlist, c_list, e_ops, args, opt,
                         progress_bar):
    """
    Internal function for solving the master equation. See mesolve for usage.
    """

    if debug:
        print(inspect.stack()[0][3])

    #
    # check initial state: must be a density matrix
    #
    if isket(rho0):
        rho0 = rho0 * rho0.dag()

    #
    # construct liouvillian
    #
    Lconst = 0

    Ldata = []
    Linds = []
    Lptrs = []
    Lcoeff = []
    Lobj = []

    # loop over all hamiltonian terms, convert to superoperator form and
    # add the data of sparse matrix representation to
    for h_spec in H_list:

        if isinstance(h_spec, Qobj):
            h = h_spec
            # L = -1.0j * (spre(H) - spost(H))
            if isoper(h):
                Lconst += -1j * (spre(h) - spost(h))
            elif issuper(h):
                Lconst += h
            else:
                raise TypeError("Incorrect specification of time-dependent " +
                                "Hamiltonian (expected operator or " +
                                "superoperator)")

        elif isinstance(h_spec, list):
            h = h_spec[0]
            h_coeff = h_spec[1]

            if isoper(h):
                L = -1j * (spre(h) - spost(h))
            elif issuper(h):
                L = h
            else:
                raise TypeError("Incorrect specification of time-dependent " +
                                "Hamiltonian (expected operator or " +
                                "superoperator)")

            Ldata.append(L.data.data)
            Linds.append(L.data.indices)
            Lptrs.append(L.data.indptr)
            if isinstance(h_coeff, Cubic_Spline):
                Lobj.append(h_coeff.coeffs)
            Lcoeff.append(h_coeff)

        else:
            raise TypeError("Incorrect specification of time-dependent " +
                            "Hamiltonian (expected string format)")

    # loop over all collapse operators
    for c_spec in c_list:

        if isinstance(c_spec, Qobj):
            c = c_spec

            if isoper(c):
                cdc = c.dag() * c
                Lconst += spre(c) * spost(c.dag()) - 0.5 * spre(cdc) \
                                                   - 0.5 * spost(cdc)
            elif issuper(c):
                Lconst += c
            else:
                raise TypeError("Incorrect specification of time-dependent " +
                                "Liouvillian (expected operator or " +
                                "superoperator)")

        elif isinstance(c_spec, list):
            c = c_spec[0]
            c_coeff = c_spec[1]

            if isoper(c):
                cdc = c.dag() * c
                L = spre(c) * spost(c.dag()) - 0.5 * spre(cdc) \
                                             - 0.5 * spost(cdc)
                c_coeff = "(" + c_coeff + ")**2"
            elif issuper(c):
                L = c
            else:
                raise TypeError("Incorrect specification of time-dependent " +
                                "Liouvillian (expected operator or " +
                                "superoperator)")

            Ldata.append(L.data.data)
            Linds.append(L.data.indices)
            Lptrs.append(L.data.indptr)
            Lcoeff.append(c_coeff)

        else:
            raise TypeError("Incorrect specification of time-dependent " +
                            "collapse operators (expected string format)")

    # add the constant part of the lagrangian
    if Lconst != 0:
        Ldata.append(Lconst.data.data)
        Linds.append(Lconst.data.indices)
        Lptrs.append(Lconst.data.indptr)
        Lcoeff.append("1.0")

    # the total number of liouvillian terms (hamiltonian terms +
    # collapse operators)
    n_L_terms = len(Ldata)

    # Check which components should use OPENMP
    omp_components = None
    if qset.has_openmp:
        if opt.use_openmp:
            omp_components = openmp_components(Lptrs)

    #
    # setup ode args string: we expand the list Ldata, Linds and Lptrs into
    # and explicit list of parameters
    #
    string_list = []
    for k in range(n_L_terms):
        string_list.append("Ldata[%d], Linds[%d], Lptrs[%d]" % (k, k, k))
    # Add object terms to end of ode args string
    for k in range(len(Lobj)):
        string_list.append("Lobj[%d]" % k)
    for name, value in args.items():
        if isinstance(value, np.ndarray):
            string_list.append(name)
        else:
            string_list.append(str(value))
    parameter_string = ",".join(string_list)

    #
    # generate and compile new cython code if necessary
    #
    if not opt.rhs_reuse or config.tdfunc is None:
        if opt.rhs_filename is None:
            config.tdname = "rhs" + str(os.getpid()) + str(config.cgen_num)
        else:
            config.tdname = opt.rhs_filename
        cgen = Codegen(h_terms=n_L_terms, h_tdterms=Lcoeff, args=args,
                       config=config, use_openmp=opt.use_openmp,
                       omp_components=omp_components,
                       omp_threads=opt.openmp_threads)
        cgen.generate(config.tdname + ".pyx")

        code = compile('from ' + config.tdname + ' import cy_td_ode_rhs',
                       '<string>', 'exec')
        exec(code, globals())
        config.tdfunc = cy_td_ode_rhs

    #
    # setup integrator
    #
    initial_vector = mat2vec(rho0.full()).ravel('F')
    if issuper(rho0):
        r = scipy.integrate.ode(_td_ode_rhs_super)
        code = compile('r.set_f_params([' + parameter_string + '])',
                       '<string>', 'exec')
    else:
        r = scipy.integrate.ode(config.tdfunc)
        code = compile('r.set_f_params(' + parameter_string + ')',
                       '<string>', 'exec')
    r.set_integrator('zvode', method=opt.method, order=opt.order,
                     atol=opt.atol, rtol=opt.rtol, nsteps=opt.nsteps,
                     first_step=opt.first_step, min_step=opt.min_step,
                     max_step=opt.max_step)
    r.set_initial_value(initial_vector, tlist[0])

    exec(code, locals(), args)

    #
    # call generic ODE code
    #
    return _generic_ode_solve(r, rho0, tlist, e_ops, opt, progress_bar)
Exemplo n.º 6
0
def _mesolve_list_func_td(H_list, rho0, tlist, c_list, e_ops, args, opt,
                          progress_bar):
    """
    Internal function for solving the master equation. See mesolve for usage.
    """

    if debug:
        print(inspect.stack()[0][3])

    #
    # check initial state
    #
    if isket(rho0):
        rho0 = rho0 * rho0.dag()

    #
    # construct liouvillian in list-function format
    #
    L_list = []
    if opt.rhs_with_state:
        constant_func = lambda x, y, z: 1.0
    else:
        constant_func = lambda x, y: 1.0

    # add all hamitonian terms to the lagrangian list
    for h_spec in H_list:

        if isinstance(h_spec, Qobj):
            h = h_spec
            h_coeff = constant_func

        elif isinstance(h_spec, list) and isinstance(h_spec[0], Qobj):
            h = h_spec[0]
            h_coeff = h_spec[1]

        else:
            raise TypeError("Incorrect specification of time-dependent " +
                            "Hamiltonian (expected callback function)")

        if isoper(h):
            L_list.append([(-1j * (spre(h) - spost(h))).data, h_coeff, False])

        elif issuper(h):
            L_list.append([h.data, h_coeff, False])

        else:
            raise TypeError("Incorrect specification of time-dependent " +
                            "Hamiltonian (expected operator or superoperator)")

    # add all collapse operators to the liouvillian list
    for c_spec in c_list:

        if isinstance(c_spec, Qobj):
            c = c_spec
            c_coeff = constant_func
            c_square = False

        elif isinstance(c_spec, list) and isinstance(c_spec[0], Qobj):
            c = c_spec[0]
            c_coeff = c_spec[1]
            c_square = True

        else:
            raise TypeError("Incorrect specification of time-dependent " +
                            "collapse operators (expected callback function)")

        if isoper(c):
            L_list.append([liouvillian(None, [c], data_only=True),
                           c_coeff, c_square])

        elif issuper(c):
            L_list.append([c.data, c_coeff, c_square])

        else:
            raise TypeError("Incorrect specification of time-dependent " +
                            "collapse operators (expected operator or " +
                            "superoperator)")

    #
    # setup integrator
    #
    initial_vector = mat2vec(rho0.full()).ravel('F')
    if issuper(rho0):
        if opt.rhs_with_state:
            r = scipy.integrate.ode(dsuper_list_td_with_state)
        else:
            r = scipy.integrate.ode(dsuper_list_td)
    else:
        if opt.rhs_with_state:
            r = scipy.integrate.ode(drho_list_td_with_state)
        else:
            r = scipy.integrate.ode(drho_list_td)
    r.set_integrator('zvode', method=opt.method, order=opt.order,
                     atol=opt.atol, rtol=opt.rtol, nsteps=opt.nsteps,
                     first_step=opt.first_step, min_step=opt.min_step,
                     max_step=opt.max_step)
    r.set_initial_value(initial_vector, tlist[0])
    r.set_f_params(L_list, args)

    #
    # call generic ODE code
    #
    return _generic_ode_solve(r, rho0, tlist, e_ops, opt, progress_bar)