def test_inner_product(): # also tested via test_gate_angle for _ in range(REPS): theta = random.uniform(-4 * pi, +4 * pi) hs = qf.asarray(qf.inner_product(qf.RX(theta).vec, qf.RX(theta).vec)) print('RX({}), hilbert_schmidt = {}'.format(theta, hs)) assert hs / 2 == ALMOST_ONE hs = qf.asarray(qf.inner_product(qf.RZ(theta).vec, qf.RZ(theta).vec)) print('RZ({}), hilbert_schmidt = {}'.format(theta, hs)) assert hs / 2 == ALMOST_ONE hs = qf.asarray(qf.inner_product(qf.RY(theta).vec, qf.RY(theta).vec)) print('RY({}), hilbert_schmidt = {}'.format(theta, hs)) assert hs / 2 == ALMOST_ONE hs = qf.asarray( qf.inner_product(qf.PSWAP(theta).vec, qf.PSWAP(theta).vec)) print('PSWAP({}), hilbert_schmidt = {}'.format(theta, hs)) assert hs / 4 == ALMOST_ONE with pytest.raises(ValueError): qf.inner_product(qf.zero_state(0).vec, qf.X(0).vec) with pytest.raises(ValueError): qf.inner_product(qf.CNOT(0, 1).vec, qf.X(0).vec)
def test_pswap(): for _ in range(REPS): theta = random.uniform(-4 * pi, +4 * pi) assert qf.almost_unitary(qf.PSWAP(theta)) assert qf.gates_close(qf.SWAP(), qf.PSWAP(0)) assert qf.gates_close(qf.ISWAP(), qf.PSWAP(pi / 2))
def test_parametric_gates1(): for _ in range(REPS): theta = random.uniform(-4 * pi, +4 * pi) assert qf.almost_unitary(qf.RX(theta)) assert qf.almost_unitary(qf.RY(theta)) assert qf.almost_unitary(qf.RZ(theta)) for _ in range(REPS): theta = random.uniform(-4 * pi, +4 * pi) assert qf.almost_unitary(qf.TX(theta)) assert qf.almost_unitary(qf.TY(theta)) assert qf.almost_unitary(qf.TZ(theta)) for _ in range(REPS): theta = random.uniform(-4 * pi, +4 * pi) assert qf.almost_unitary(qf.CPHASE00(theta)) assert qf.almost_unitary(qf.CPHASE01(theta)) assert qf.almost_unitary(qf.CPHASE10(theta)) assert qf.almost_unitary(qf.CPHASE(theta)) assert qf.almost_unitary(qf.PSWAP(theta)) assert qf.gates_close(qf.I(), qf.I()) assert qf.gates_close(qf.RX(pi), qf.X()) assert qf.gates_close(qf.RY(pi), qf.Y()) assert qf.gates_close(qf.RZ(pi), qf.Z())
def test_fubini_study_angle(): for _ in range(REPS): theta = random.uniform(-pi, +pi) ang = qf.asarray(qf.fubini_study_angle(qf.I().vec, qf.RX(theta).vec)) assert 2 * ang / abs(theta) == ALMOST_ONE ang = qf.asarray(qf.fubini_study_angle(qf.I().vec, qf.RY(theta).vec)) assert 2 * ang / abs(theta) == ALMOST_ONE ang = qf.asarray(qf.fubini_study_angle(qf.I().vec, qf.RZ(theta).vec)) assert 2 * ang / abs(theta) == ALMOST_ONE ang = qf.asarray( qf.fubini_study_angle(qf.SWAP().vec, qf.PSWAP(theta).vec)) assert 2 * ang / abs(theta) == ALMOST_ONE ang = qf.asarray(qf.fubini_study_angle(qf.I().vec, qf.PHASE(theta).vec)) assert 2 * ang / abs(theta) == ALMOST_ONE for n in range(1, 6): eye = qf.identity_gate(n) assert qf.asarray(qf.fubini_study_angle(eye.vec, eye.vec)) \ == ALMOST_ZERO with pytest.raises(ValueError): qf.fubini_study_angle(qf.random_gate(1).vec, qf.random_gate(2).vec)
def test_gatepow(): gates = [ qf.I(), qf.X(), qf.Y(), qf.Z(), qf.H(), qf.S(), qf.T(), qf.PHASE(0.1), qf.RX(0.2), qf.RY(0.3), qf.RZ(0.4), qf.CZ(), qf.CNOT(), qf.SWAP(), qf.ISWAP(), qf.CPHASE00(0.5), qf.CPHASE01(0.6), qf.CPHASE10(0.6), qf.CPHASE(0.7), qf.PSWAP(0.15), qf.CCNOT(), qf.CSWAP(), qf.TX(2.7), qf.TY(1.2), qf.TZ(0.3), qf.ZYZ(3.5, 0.9, 2.1), qf.CANONICAL(0.1, 0.2, 7.4), qf.XX(1.8), qf.YY(0.9), qf.ZZ(0.45), qf.PISWAP(0.2), qf.EXCH(0.1), qf.TH(0.3) ] for gate in gates: assert qf.gates_close(gate.H, gate**-1) for gate in gates: sqrt_gate = gate**(1 / 2) two_gate = sqrt_gate @ sqrt_gate assert qf.gates_close(gate, two_gate) for gate in gates: gate0 = gate**0.3 gate1 = gate**0.7 gate2 = gate0 @ gate1 assert qf.gates_close(gate, gate2) for K in range(1, 5): gate = qf.random_gate(K) # FIXME: Throw error on K=0 sqrt_gate = gate**0.5 two_gate = sqrt_gate @ sqrt_gate assert qf.gates_close(gate, two_gate) for gate in gates: rgate = qf.Gate((gate**0.5).tensor) tgate = rgate @ rgate assert qf.gates_close(gate, tgate)
def test_gates_to_latex(): circ = qf.Circuit() circ += qf.I(7) circ += qf.X(0) circ += qf.Y(1) circ += qf.Z(2) circ += qf.H(3) circ += qf.S(4) circ += qf.T(5) circ += qf.S_H(6) circ += qf.T_H(7) circ += qf.RX(-0.5*pi, 0) circ += qf.RY(0.5*pi, 4) circ += qf.RZ((1/3)*pi, 5) circ += qf.RY(0.222, 6) circ += qf.TX(0.5, 0) circ += qf.TY(0.5, 2) circ += qf.TZ(0.4, 2) circ += qf.TH(0.5, 3) circ += qf.TZ(0.47276, 1) # Gate with cunning hack gate = qf.RZ(0.4, 1) gate.params['theta'] = qf.Parameter('\\theta') circ += gate circ += qf.CNOT(1, 2) circ += qf.CNOT(2, 1) circ += qf.I(*range(8)) circ += qf.ISWAP(4, 2) circ += qf.ISWAP(6, 5) circ += qf.CZ(1, 3) circ += qf.SWAP(1, 5) # circ += qf.Barrier(0, 1, 2, 3, 4, 5, 6) # Not yet supported circ += qf.CCNOT(1, 2, 3) circ += qf.CSWAP(4, 5, 6) circ += qf.P0(0) circ += qf.P1(1) circ += qf.Reset(2) circ += qf.Reset(4, 5, 6) circ += qf.H(4) # circ += qf.Reset() # FIXME. Should fail with clear error message circ += qf.XX(0.25, 1, 3) circ += qf.XX(0.25, 1, 2) circ += qf.YY(0.75, 1, 3) circ += qf.ZZ(1/3, 3, 1) circ += qf.CPHASE(0, 5, 6) circ += qf.CPHASE(pi*1/2, 0, 4) circ += qf.CAN(1/3, 1/2, 1/2, 0, 1) circ += qf.CAN(1/3, 1/2, 1/2, 2, 4) circ += qf.CAN(1/3, 1/2, 1/2, 6, 5) circ += qf.Measure(0) circ += qf.PSWAP(pi/2, 6, 7) qf.circuit_to_latex(circ)