Exemplo n.º 1
0
    def generateQ1output(cls, additionalResultsDict, analysisQuestion, choices, galaxyFn,
                         gsPerTrackResults, queryTrackTitle, gsuite, results,
                         similarityStatClassName):
        core = HtmlCore()
        core.begin()
        core.divBegin(divId='results-page')
        core.divBegin(divClass='results-section')
        core.header(analysisQuestion)
        topTrackTitle = results.keys()[0]
        core.paragraph('''
                The track "%s" in the GSuite is the one most similar to the query track %s, with a similarity score of %s
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                as measured by the "%s" track similarity measure.
            ''' % (
            topTrackTitle, queryTrackTitle, strWithNatLangFormatting(results[topTrackTitle]),
            similarityStatClassName))
        core.divBegin()

        addTableWithTabularAndGsuiteImportButtons(
            core, choices, galaxyFn, cls.Q1_SHORT, tableDict=gsPerTrackResults[1],
            columnNames=gsPerTrackResults[0], gsuite=gsuite, results=results,
            gsuiteAppendAttrs=['similarity_score'], sortable=True)

        core.divEnd()
        columnInd = 0
        if choices.leadAttribute and choices.leadAttribute != GSuiteConstants.TITLE_COL:
            columnInd = 1

        res = GSuiteTracksCoincidingWithQueryTrackTool.drawPlot(
            results, additionalResultsDict,
            'Similarity to query track', columnInd=columnInd)
        core.line(res)
        core.divEnd()
        core.divEnd()
        core.end()
        return core
Exemplo n.º 2
0
    def generateQ2Output(cls, additionalAttributesDict, additionalResultsDict, analysisQuestion, choices,
                         galaxyFn, queryTrackTitle, gsuite, results, similarityStatClassName):
        gsPerTrackResultsModel = GSuitePerTrackResultModel(results, ['Similarity to query track', 'P-value'],
                                                           additionalResultsDict=additionalResultsDict,
                                                           additionalAttributesDict=additionalAttributesDict)
        if choices.leadAttribute and choices.leadAttribute != GSuiteConstants.TITLE_COL:
            gsPerTrackResults = gsPerTrackResultsModel.generateColumnTitlesAndResultsDict(choices.leadAttribute)
        else:
            gsPerTrackResults = gsPerTrackResultsModel.generateColumnTitlesAndResultsDict()
        core = HtmlCore()
        core.begin()
        core.divBegin(divId='results-page')
        core.divBegin(divClass='results-section')
        core.header(analysisQuestion)
        topTrackTitle = results.keys()[0]
        core.paragraph('''
                The track "%s" has the lowest P-value of %s corresponding to %s  similarity to the query track "%s"
                as measured by "%s" track similarity measure.
            ''' % (topTrackTitle, strWithNatLangFormatting(results[topTrackTitle][1]),
                   strWithNatLangFormatting(results[topTrackTitle][0]), queryTrackTitle, similarityStatClassName))

        addTableWithTabularAndGsuiteImportButtons(
            core, choices, galaxyFn, cls.Q2_SHORT, tableDict=gsPerTrackResults[1],
            columnNames=gsPerTrackResults[0], gsuite=gsuite, results=results,
            gsuiteAppendAttrs=['similarity_score', 'p_value'], sortable=True)

        columnInd = 0
        if choices.leadAttribute and choices.leadAttribute != GSuiteConstants.TITLE_COL:
            columnInd = 1

        resultsSeparateListPart = OrderedDict()
        additionalResultsDictIncludePartFromResults = OrderedDict()

        for k, v in results.iteritems():
            if k not in resultsSeparateListPart.keys():
                resultsSeparateListPart[k] = v[0]
            if k not in additionalResultsDictIncludePartFromResults.keys():
                additionalResultsDictIncludePartFromResults[k] = OrderedDict()
            additionalResultsDictIncludePartFromResults[k]['P-Value'] = v[1]
            for k1, v1 in additionalResultsDict[k].iteritems():
                additionalResultsDictIncludePartFromResults[k][k1] = v1

        res = GSuiteTracksCoincidingWithQueryTrackTool.drawPlot(
            resultsSeparateListPart, additionalResultsDictIncludePartFromResults,
            'Similarity to query track', columnInd=columnInd)
        core.line(res)
        core.divEnd()
        core.divEnd()
        core.end()
        return core
Exemplo n.º 3
0
    def execute(cls, choices, galaxyFn=None, username=''):
        '''
        Is called when execute-button is pushed by web-user. Should print
        output as HTML to standard out, which will be directed to a results
        page in Galaxy history. If getOutputFormat is anything else than HTML,
        the output should be written to the file with path galaxyFn. If needed,
        StaticFile can be used to get a path where additional files can be put
        (e.g. generated image files). choices is a list of selections made by
        web-user in each options box.
        '''

        cls._setDebugModeIfSelected(choices)

        # First compute pvalue by running the statistic through a wrapper stat that computes the max per bin
        """
        from quick.statistic.RandomizationManagerV3Stat import RandomizationManagerV3Stat
        from quick.statistic.CollectionBinnedHypothesisWrapperStat import CollectionBinnedHypothesisWrapperStat
        analysisSpec = AnalysisSpec(CollectionBinnedHypothesisWrapperStat)
        analysisSpec.addParameter("rawStatistic", "GenericMaxBinValueStat")
        analysisSpec.addParameter('perBinStatistic', 'SummarizedStat')
        analysisSpec.addParameter('mcSamplerClass', 'NaiveMCSamplingV2Stat')
        analysisSpec.addParameter('pairwiseStatistic', 'ProportionCountStat')
        analysisSpec.addParameter('summaryFunc', choices.summaryFunc)
        analysisSpec.addParameter('evaluatorFunc','evaluatePvalueAndNullDistribution')
        analysisSpec.addParameter('tail', 'right-tail')
        analysisSpec.addParameter('assumptions', 'RandomGenomeLocationTrack')
        analysisSpec.addParameter('maxSamples', 10)

        gsuite = getGSuiteFromGalaxyTN(choices.gsuite)
        tracks = [Track(x.trackName) for x in gsuite.allTracks()]

        regSpec, binSpec = cls.getRegsAndBinsSpec(choices)

        analysisBins = GalaxyInterface._getUserBinSource(regSpec,
                                                         binSpec,
                                                         choices.genome)
        results = doAnalysis(analysisSpec, analysisBins, tracks)

        print "<p>Max stat results:</p>"

        print results.getGlobalResult()
        """
        # Stat question 4
        summaryFunc = choices.summaryFunc if choices.summaryFunc else cls.SUMMARY_FUNC_DEFAULT
        statTxt = "Average"
        if (summaryFunc == "max"): statTxt = "Maximum"

        statDesc = 'number of <b>segments</b> per base'
        if choices.analysisName == cls.Q2:
            statDesc = 'number of <b>base pairs covered by segments</b>'

        core = HtmlCore()
        core.begin()
        core.header("Enrichment of GSuite tracks across regions")
        core.divBegin(divClass='resultsExplanation')
        core.paragraph(
            'The following is a list of all regions (bins) and the <b>' +
            statTxt.lower() + '</b> ' + statDesc +
            ' across the tracks within each region.')
        core.divEnd()

        if choices.analysisName == cls.Q3:

            # Compute p-value per bin
            analysisSpec = AnalysisSpec(GSuiteBinEnrichmentPValWrapperStat)
            analysisSpec.addParameter('rawStatistic', 'BinSizeStat')
            #analysisSpec.addParameter('pairwiseStatistic', 'ProportionElementCountStat')
            #analysisSpec.addParameter('pairwiseStatistic', 'ProportionElementCountStat')
            #analysisSpec.addParameter('summaryFunc', summaryFunc)
            gsuite = getGSuiteFromGalaxyTN(choices.gsuite)
            tracks = [Track(x.trackName) for x in gsuite.allTracks()]
            regSpec, binSpec = cls.getRegsAndBinsSpec(choices)
            from quick.statistic.GenericRelativeToGlobalStat import GenericRelativeToGlobalStatUnsplittable
            #analysisSpec.addParameter("globalSource", GenericRelativeToGlobalStatUnsplittable.getGlobalSource('test', choices.genome, False))
            analysisSpec.addParameter("globalSource", 'userbins')
            analysisBins = GalaxyInterface._getUserBinSource(
                regSpec, binSpec, choices.genome)
            results_pval = doAnalysis(analysisSpec, analysisBins, tracks)

        #print results_pval

        analysisSpec = AnalysisSpec(SummarizedWrapperStat)
        analysisSpec.addParameter('rawStatistic', 'SummarizedWrapperStat')

        countStat = 'ProportionElementCountStat'
        if choices.analysisName == cls.Q2:
            countStat = 'ProportionCountStat'

        # analysisSpec.addParameter('pairwiseStatistic', 'ProportionCountStat')
        analysisSpec.addParameter('pairwiseStatistic', countStat)
        analysisSpec.addParameter('summaryFunc', summaryFunc)
        gsuite = getGSuiteFromGalaxyTN(choices.gsuite)
        tracks = [Track(x.trackName) for x in gsuite.allTracks()]

        regSpec, binSpec = cls.getRegsAndBinsSpec(choices)
        analysisBins = GalaxyInterface._getUserBinSource(
            regSpec, binSpec, choices.genome)
        results = doAnalysis(analysisSpec, analysisBins, tracks)

        prettyResults = {}
        #print results

        for key, val in results.iteritems():
            if "Result" in val.keys():

                if choices.analysisName == cls.Q3:
                    prettyResults[key] = (val["Result"],
                                          results_pval[key]["Result"])
                else:
                    prettyResults[key] = (val["Result"])
            else:
                prettyResults[key] = "No result"

        topTrackTitle = results.keys()[0]
        """
        core.paragraph('''
            Suite data is coinciding the most in bin %s
        ''' % ('test'))
        """

        columnNames = ['Bin', 'Representation within the bin']
        if choices.analysisName == cls.Q3:
            columnNames.append('p-value')

        core.divBegin()
        if choices.analysisName == cls.Q1:
            shortQuestion = cls.Q1_SHORT
        elif choices.analysisName == cls.Q2:
            shortQuestion = cls.Q2_SHORT
        else:  # Q3
            shortQuestion = cls.Q3_SHORT

        visibleRows = 20
        makeTableExpandable = len(prettyResults) > visibleRows

        addTableWithTabularAndGsuiteImportButtons(
            core,
            choices,
            galaxyFn,
            shortQuestion,
            tableDict=prettyResults,
            columnNames=columnNames,
            sortable=True,
            presorted=0,
            expandable=makeTableExpandable)

        core.divEnd()
        core.end()

        print str(core)
    def execute(cls, choices, galaxyFn=None, username=''):
        '''
        Is called when execute-button is pushed by web-user. Should print
        output as HTML to standard out, which will be directed to a results
        page in Galaxy history. If getOutputFormat is anything else than HTML,
        the output should be written to the file with path galaxyFn. If needed,
        StaticFile can be used to get a path where additional files can be put
        (e.g. generated image files). choices is a list of selections made by
        web-user in each options box.
        '''

        import warnings
        #warnings.simplefilter('error')

        cls._setDebugModeIfSelected(choices)

        similarityStatClassName = choices.similarityFunc if choices.similarityFunc else GSuiteStatUtils.T5_RATIO_OF_OBSERVED_TO_EXPECTED_OVERLAP

        summaryFunc = choices.summaryFunc if choices.summaryFunc else cls.SUMMARY_FUNC_DEFAULT

        pairwiseStatName = GSuiteStatUtils.PAIRWISE_STAT_LABEL_TO_CLASS_MAPPING[similarityStatClassName]

        gsuite = getGSuiteFromGalaxyTN(choices.gsuite)
        tracks = [Track(x.trackName) for x in gsuite.allTracks()]

        statTxt = "Average"
        if(summaryFunc == "max"): statTxt = "Maximum"


        if choices.analysisName == cls.Q2:


            mcfdrDepth = choices.mcfdrDepth if choices.mcfdrDepth else AnalysisDefHandler(REPLACE_TEMPLATES['$MCFDR$']).getOptionsAsText().values()[0][0]

            # First compute pvalue by running the statistic through a wrapper stat that computes the max per bin
            #from quick.statistic.CollectionBinnedHypothesisWrapperStat import CollectionBinnedHypothesisWrapperStat
            #analysisSpec = AnalysisSpec(CollectionBinnedHypothesisWrapperStat)

            analysisDefString = REPLACE_TEMPLATES['$MCFDRv3$'] + ' -> CollectionBinnedHypothesisWrapperStat'
            analysisSpec = AnalysisDefHandler(analysisDefString)
            analysisSpec.setChoice('MCFDR sampling depth', mcfdrDepth)

            analysisSpec.addParameter("rawStatistic", "GenericMaxBinValueStat")
            # analysisSpec.addParameter('perBinStatistic', 'SummarizedStat')
            analysisSpec.addParameter('perBinStatistic', 'MultitrackSummarizedInteractionV2Stat')
            # analysisSpec.addParameter('mcSamplerClass', 'NaiveMCSamplingV2Stat')
            analysisSpec.addParameter('pairwiseStatistic', 'ObservedVsExpectedStat')
            analysisSpec.addParameter('summaryFunc', summaryFunc)
            # analysisSpec.addParameter('evaluatorFunc','evaluatePvalueAndNullDistribution')
            analysisSpec.addParameter('tail', 'right-tail')
            analysisSpec.addParameter('assumptions', 'RandomGenomeLocationTrack')
            #analysisSpec.addParameter('maxSamples', 10)
            analysisSpec.addParameter('multitrackSummaryFunc', summaryFunc)




            regSpec, binSpec = cls.getRegsAndBinsSpec(choices)

            analysisBins = GalaxyInterface._getUserBinSource(regSpec,
                                                             binSpec,
                                                             choices.genome)

            results = doAnalysis(analysisSpec, analysisBins, tracks)
            results = results.getGlobalResult()
            resultsTxt = "The highest ranking bin based on the " + statTxt.lower() + " of the Forbes similarity measure for pairs of tracks within each bin had a score of <b>%.3f</b> with p-value <b>%.6f</b>" % (results["TSMC_GenericMaxBinValueStat"], results['P-value'])



        # Stat question 7
        core = HtmlCore()
        core.begin()
        analysisSpec = AnalysisSpec(MultitrackSummarizedInteractionWrapperStat)
        #analysisSpec.addParameter('pairwiseStatistic', 'ObservedVsExpectedStat')
        analysisSpec.addParameter('pairwiseStatistic', GSuiteStatUtils.PAIRWISE_STAT_LABEL_TO_CLASS_MAPPING[similarityStatClassName])
        analysisSpec.addParameter('summaryFunc', summaryFunc)
        analysisSpec.addParameter('multitrackSummaryFunc', summaryFunc)
        gsuite = getGSuiteFromGalaxyTN(choices.gsuite)
        tracks = [Track(x.trackName) for x in gsuite.allTracks()]

        regSpec, binSpec = cls.getRegsAndBinsSpec(choices)

        analysisBins = GalaxyInterface._getUserBinSource(regSpec,
                                                         binSpec,
                                                         choices.genome)
        results = doAnalysis(analysisSpec, analysisBins, tracks)
        #print '<br>results: ', results, '<br><br>'





        prettyResults = OrderedDict()
        for key, val in results.iteritems():
            if "Result" in val.keys():
                prettyResults[key] = val["Result"]
            else:
                prettyResults[key] = "No result"

        core.header(statTxt + " co-occurence between pairs of tracks within each bin")

        if choices.analysisName == cls.Q2:
            core.paragraph(resultsTxt)

        core.divBegin(divClass='resultsExplanation')
        core.paragraph('The following is a list of all bins and the <b>' + statTxt.lower() + '</b> co-occurrence of tracks within each bin.')
        core.divEnd()


        """
        core.paragraph('''
            Suite data is coinciding the most in bin %s
        ''' % ('test'))
        """

        visibleRows = 20
        makeTableExpandable = len(prettyResults) > visibleRows
        columnNames = ['Bin', 'Co-occurrence within the bin']
        if choices.analysisName == cls.Q1:
            shortQuestion = cls.Q1_SHORT
        else:
            shortQuestion = cls.Q2_SHORT

        addTableWithTabularAndGsuiteImportButtons(
            core, choices, galaxyFn, shortQuestion, tableDict=prettyResults,
            columnNames=columnNames, sortable=True, presorted=0,
            expandable=makeTableExpandable, visibleRows=visibleRows)

        core.divEnd()
        core.end()

        print str(core)
Exemplo n.º 5
0
    def execute(cls, choices, galaxyFn=None, username=''):
        '''
        Is called when execute-button is pushed by web-user. Should print
        output as HTML to standard out, which will be directed to a results page
        in Galaxy history. If getOutputFormat is anything else than HTML, the
        output should be written to the file with path galaxyFn. If needed,
        StaticFile can be used to get a path where additional files can be put
        (e.g. generated image files). choices is a list of selections made by
        web-user in each options box.
        '''
        import numpy
        numpy.seterr(all='raise')
        cls._setDebugModeIfSelected(choices)
        # DebugUtil.insertBreakPoint(username=username, currentUser='******')
        genome = choices.genome
        analysisQuestion = choices.analysisName
        similaryStatClassName = choices.similarityFunc if choices.similarityFunc else GSuiteStatUtils.T5_RATIO_OF_OBSERVED_TO_EXPECTED_OVERLAP
        summaryFunc = choices.summaryFunc if choices.summaryFunc else 'average'
        reverse = 'Yes' if choices.reversed else 'No'

        gsuite = getGSuiteFromGalaxyTN(choices.gsuite)
        regSpec, binSpec = UserBinMixin.getRegsAndBinsSpec(choices)
        analysisBins = GalaxyInterface._getUserBinSource(regSpec,
                                                         binSpec,
                                                         genome=genome)
        tracks = [
            Track(x.trackName, trackTitle=x.title) for x in gsuite.allTracks()
        ]
        trackTitles = CommonConstants.TRACK_TITLES_SEPARATOR.join(
            [quote(x.title, safe='') for x in gsuite.allTracks()])

        additionalResultsDict = OrderedDict()
        additionalAttributesDict = OrderedDict()
        if analysisQuestion in [cls.Q1, cls.Q2, cls.Q3]:
            additionalAttributesDict = cls.getSelectedAttributesForEachTrackDict(
                choices.additionalAttributes, gsuite)
            #additional analysis
            stats = [CountStat, CountElementStat]
            additionalResultsDict = runMultipleSingleValStatsOnTracks(
                gsuite, stats, analysisBins, queryTrack=None)

        if analysisQuestion == cls.Q1:
            analysisSpec = AnalysisSpec(
                GSuiteRepresentativenessOfTracksRankingsWrapperStat)
            analysisSpec.addParameter(
                'pairwiseStatistic', GSuiteStatUtils.
                PAIRWISE_STAT_LABEL_TO_CLASS_MAPPING[similaryStatClassName])
            analysisSpec.addParameter(
                'summaryFunc',
                GSuiteStatUtils.SUMMARY_FUNCTIONS_MAPPER[summaryFunc])
            analysisSpec.addParameter('reverse', reverse)
            analysisSpec.addParameter('ascending', 'No')
            analysisSpec.addParameter('trackTitles', trackTitles)
            analysisSpec.addParameter('queryTracksNum', len(tracks))
            results = doAnalysis(analysisSpec, analysisBins,
                                 tracks).getGlobalResult()

            gsPerTrackResultsModel = GSuitePerTrackResultModel(
                results,
                ['Similarity to rest of tracks in suite (%s)' % summaryFunc],
                additionalResultsDict=additionalResultsDict,
                additionalAttributesDict=additionalAttributesDict)
            if choices.leadAttribute and choices.leadAttribute != GSuiteConstants.TITLE_COL:
                columnTitles, decoratedResultsDict = \
                    gsPerTrackResultsModel.generateColumnTitlesAndResultsDict(choices.leadAttribute)
            else:
                columnTitles, decoratedResultsDict = \
                    gsPerTrackResultsModel.generateColumnTitlesAndResultsDict()

            core = HtmlCore()
            core.begin()
            core.divBegin(divId='results-page')
            core.divBegin(divClass='results-section')
            core.header(analysisQuestion)
            topTrackTitle = results.keys()[0]
            core.paragraph('''
                The track "%s" is the most representative track of the GSuite with %s %s similarity to the rest of the tracks
                as measured by "%s" track similarity measure.
            ''' % (topTrackTitle, results[topTrackTitle], summaryFunc,
                   similaryStatClassName))

            addTableWithTabularAndGsuiteImportButtons(
                core,
                choices,
                galaxyFn,
                cls.Q1_SHORT,
                decoratedResultsDict,
                columnTitles,
                gsuite=gsuite,
                results=results,
                gsuiteAppendAttrs=['similarity_score'],
                sortable=True)

            # plot
            columnInd = 0
            if choices.leadAttribute and choices.leadAttribute != GSuiteConstants.TITLE_COL:
                columnInd = 1
            res = GSuiteTracksCoincidingWithQueryTrackTool.drawPlot(
                results,
                additionalResultsDict,
                'Similarity to rest of tracks in suite (%s)' % summaryFunc,
                columnInd=columnInd)
            core.line(res)
            core.divEnd()
            core.divEnd()
            core.end()

        # elif analysisQuestion == cls.Q2:
        #     analysisSpec = AnalysisSpec(GSuiteRepresentativenessOfTracksRankingsWrapperStat)
        #     analysisSpec.addParameter('pairwiseStatistic', GSuiteStatUtils.PAIRWISE_STAT_LABEL_TO_CLASS_MAPPING[similaryStatClassName])
        #     analysisSpec.addParameter('summaryFunc', GSuiteStatUtils.SUMMARY_FUNCTIONS_MAPPER[summaryFunc])
        #     analysisSpec.addParameter('reverse', reverse)
        #     analysisSpec.addParameter('ascending', 'Yes')
        #     analysisSpec.addParameter('trackTitles', trackTitles)
        #     results = doAnalysis(analysisSpec, analysisBins, tracks).getGlobalResult()
        #
        #     gsPerTrackResultsModel = GSuitePerTrackResultModel(
        #         results, ['Similarity to rest of tracks in suite (%s)' % summaryFunc],
        #         additionalResultsDict=additionalResultsDict,
        #         additionalAttributesDict=additionalAttributesDict)
        #     if choices.leadAttribute and choices.leadAttribute != GSuiteConstants.TITLE_COL:
        #         columnTitles, decoratedResultsDict = \
        #             gsPerTrackResultsModel.generateColumnTitlesAndResultsDict(choices.leadAttribute)
        #     else:
        #         columnTitles, decoratedResultsDict = \
        #             gsPerTrackResultsModel.generateColumnTitlesAndResultsDict()
        #
        #     core = HtmlCore()
        #     core.begin()
        #     core.divBegin(divId='results-page')
        #     core.divBegin(divClass='results-section')
        #     core.header(analysisQuestion)
        #     topTrackTitle = results.keys()[0]
        #     core.paragraph('''
        #         The track "%s" is the most atypical track of the GSuite with %s %s similarity to the rest of the tracks
        #         as measured by the "%s" track similarity measure.
        #     ''' % (topTrackTitle, strWithNatLangFormatting(results[topTrackTitle]), summaryFunc, similaryStatClassName))
        #     # core.tableFromDictionary(results, columnNames=['Track title', 'Similarity to rest of tracks in suite (' + summaryFunc+')'], sortable=False)
        #
        #     from quick.util import CommonFunctions
        #     rawDataURIList = CommonFunctions.getHyperlinksForRawTableData(
        #         dataDict=decoratedResultsDict, colNames=columnTitles,
        #         tableId="resultsTable", galaxyFn=galaxyFn)
        #     core.tableFromDictionary(decoratedResultsDict, columnNames=columnTitles, sortable=True,
        #                              tableId='resultsTable', addInstruction=True,
        #                              addRawDataSelectBox=True, rawDataURIList=rawDataURIList)
        #     # core.tableFromDictionary(decoratedResultsDict, columnNames=columnTitles, sortable=True, tableId='resultsTable')
        #
        #     columnInd = 0
        #     if choices.leadAttribute and choices.leadAttribute != GSuiteConstants.TITLE_COL:
        #         columnInd = 1
        #     res = GSuiteTracksCoincidingWithQueryTrackTool.drawPlot(
        #         results, additionalResultsDict,
        #         'Similarity to rest of tracks in suite (%s)' % summaryFunc,
        #         columnInd=columnInd)
        #     core.line(res)
        #     core.divEnd()
        #     core.divEnd()
        #     core.end()
        #
        #     if choices.addResults == 'Yes':
        #         GSuiteStatUtils.addResultsToInputGSuite(
        #             gsuite, results, ['Similarity_score'],
        #             cls.extraGalaxyFn[GSUITE_EXPANDED_WITH_RESULT_COLUMNS_FILENAME])
        elif analysisQuestion == cls.Q3:

            mcfdrDepth = choices.mcfdrDepth if choices.mcfdrDepth else \
            AnalysisDefHandler(REPLACE_TEMPLATES['$MCFDR$']).getOptionsAsText().values()[0][0]

            analysisDefString = REPLACE_TEMPLATES[
                '$MCFDRv3$'] + ' -> GSuiteRepresentativenessOfTracksRankingsAndPValuesWrapperStat'
            analysisSpec = AnalysisDefHandler(analysisDefString)
            analysisSpec.setChoice('MCFDR sampling depth', mcfdrDepth)
            analysisSpec.addParameter('assumptions',
                                      'PermutedSegsAndIntersegsTrack')
            analysisSpec.addParameter(
                'rawStatistic',
                SummarizedInteractionWithOtherTracksV2Stat.__name__)
            analysisSpec.addParameter(
                'pairwiseStatistic', GSuiteStatUtils.
                PAIRWISE_STAT_LABEL_TO_CLASS_MAPPING[similaryStatClassName])
            analysisSpec.addParameter(
                'summaryFunc',
                GSuiteStatUtils.SUMMARY_FUNCTIONS_MAPPER[summaryFunc])
            analysisSpec.addParameter('tail', 'right-tail')
            analysisSpec.addParameter('trackTitles', trackTitles)
            results = doAnalysis(analysisSpec, analysisBins,
                                 tracks).getGlobalResult()
            core = HtmlCore()

            gsPerTrackResultsModel = GSuitePerTrackResultModel(
                results, [
                    'Similarity to rest of tracks in suite (%s)' % summaryFunc,
                    'P-value'
                ],
                additionalResultsDict=additionalResultsDict,
                additionalAttributesDict=additionalAttributesDict)
            if choices.leadAttribute and choices.leadAttribute != GSuiteConstants.TITLE_COL:
                columnTitles, decoratedResultsDict = \
                    gsPerTrackResultsModel.generateColumnTitlesAndResultsDict(choices.leadAttribute)
            else:
                columnTitles, decoratedResultsDict = \
                    gsPerTrackResultsModel.generateColumnTitlesAndResultsDict()

            core.begin()
            core.divBegin(divId='results-page')
            core.divBegin(divClass='results-section')
            core.header(analysisQuestion)
            topTrackTitle = results.keys()[0]
            core.paragraph('''
                The track "%s" has the lowest P-value of %s corresponding to %s %s similarity to the rest of the tracks
                as measured by "%s" track similarity measure.
            ''' % (topTrackTitle,
                   strWithNatLangFormatting(results[topTrackTitle][1]),
                   strWithNatLangFormatting(results[topTrackTitle][0]),
                   summaryFunc, similaryStatClassName))
            # core.tableFromDictionary(results, columnNames=['Track title', 'Similarity to rest of tracks in suite (' + summaryFunc+')', 'P-value'], sortable=False)

            addTableWithTabularAndGsuiteImportButtons(
                core,
                choices,
                galaxyFn,
                cls.Q3_SHORT,
                decoratedResultsDict,
                columnTitles,
                gsuite=gsuite,
                results=results,
                gsuiteAppendAttrs=['similarity_score', 'p_value'],
                sortable=True)

            core.divEnd()
            core.divEnd()
            core.end()
        else:  # Q4
            mcfdrDepth = choices.mcfdrDepth if choices.mcfdrDepth else \
                AnalysisDefHandler(REPLACE_TEMPLATES['$MCFDR$']).getOptionsAsText().values()[0][0]
            analysisDefString = REPLACE_TEMPLATES[
                '$MCFDRv3$'] + ' -> CollectionSimilarityHypothesisWrapperStat'
            analysisSpec = AnalysisDefHandler(analysisDefString)
            analysisSpec.setChoice('MCFDR sampling depth', mcfdrDepth)
            analysisSpec.addParameter('assumptions',
                                      'PermutedSegsAndIntersegsTrack')
            analysisSpec.addParameter('rawStatistic',
                                      'MultitrackSummarizedInteractionV2Stat')
            analysisSpec.addParameter(
                'pairwiseStatistic', GSuiteStatUtils.
                PAIRWISE_STAT_LABEL_TO_CLASS_MAPPING[similaryStatClassName])
            analysisSpec.addParameter(
                'summaryFunc',
                GSuiteStatUtils.SUMMARY_FUNCTIONS_MAPPER[summaryFunc])
            analysisSpec.addParameter('multitrackSummaryFunc',
                                      'avg')  # should it be a choice?
            analysisSpec.addParameter('tail', 'right-tail')
            results = doAnalysis(analysisSpec, analysisBins,
                                 tracks).getGlobalResult()
            pval = results['P-value']
            observed = results['TSMC_MultitrackSummarizedInteractionV2Stat']
            significanceLevel = 'strong' if pval < 0.01 else (
                'weak' if pval < 0.05 else 'no')
            core = HtmlCore()
            core.begin()
            core.divBegin(divId='results-page')
            core.divBegin(divClass='results-section')
            core.header(analysisQuestion)
            core.paragraph('''
                The tracks in the suite show %s significance in their collective similarity
                (average similarity of a track to the rest) of %s
                and corresponding p-value of %s,
                as measured by "%s" track similarity measure.
            ''' % (significanceLevel, strWithNatLangFormatting(observed),
                   strWithNatLangFormatting(pval), similaryStatClassName))
            core.divEnd()
            core.divEnd()
            core.end()

        print str(core)