Exemplo n.º 1
0
 def _createTrackFromDownloadedFile(self, filepath):
     
     trackName = ''
     filename = filepath.split('/')[-1]
     galaxyFile = GalaxyRunSpecificFile([filename], self._galaxyFn)
     
     # Find the file type of downloaded file
     fileType = self._findFileType(filepath)
     
     if fileType == None:
         # If invalid file type, raise an exception
         raise Exception('%s is not in a valid format' % filepath)
     elif fileType == 'directory':
         
         trackName = None
     elif fileType == 'tar': 
         # If its a zip file, extract it
         os.system('mkdir %s' % galaxyFile.getDiskPath(True).split('.')[0])
         trackName = self._extractZipFile(filepath)
     else: 
         # If its a valid trackName file, copy it and create a trackName
         os.system('cp %s %s' % (filepath, galaxyFile.getDiskPath(True)))
         trackName = 'galaxy:%s:%s:None' % (fileType, galaxyFile.getDiskPath())
     
     return trackName
Exemplo n.º 2
0
 def convertToGTrack(self, trackName, regionTrackName=None, gtconverter=None, normalizeValues=False):
     
     trackData = trackName.split(':')
     fileFormat = trackData[1]
     
     if gtconverter == None:
         gtconverter = GTrackConverter()
     
     
     
     if not fileFormat == 'gtrack' or normalizeValues == True: 
         # If the file is in a format which requires the original fasta sequence
         if fileFormat == 'ymf':
             # First retrieve the fasta file, then go ahead and convert to GTrack
             fastaFile = GalaxyRunSpecificFile(['tmp.fasta'], self._galaxyFn)
             self.retrieveTrack(regionTrackName, fastaFile.getDiskPath(True))
             
             trackData[2] = gtconverter.convertToGTrack(trackData[2], 
                             fileFormat, self._galaxyFn, fastaFilePath=fastaFile.getDiskPath())
             
             trackData[1] = 'gtrack'
         else:
             trackData[2] = gtconverter.convertToGTrack(trackData[2], 
                             fileFormat, self._galaxyFn, normalizeValues=normalizeValues)
             
             trackData[1] = 'gtrack'
             
         trackName = '%s:%s:%s:%s' % (trackData[0], trackData[1], trackData[2], trackData[3])
         
     return trackName, fileFormat
Exemplo n.º 3
0
 def handlePairDistance(self, genome, tracks, track_names, clusterMethod, extra_option):
     from gold.application.RSetup import r
     if self.params.has_key("pair_feature") : # must use "" here because the '' does not work
         feature = self.params.get('pair_feature')
         extra_feature = self.params.get('pair_feature+') #must be different from the text --select--
         d_matrix = self.constructDistMatrix(genome, tracks, feature, extra_feature)
         figure = GalaxyRunSpecificFile(['cluster_trakcs_result_figure.pdf'], self.jobFile) #this figure is runspecific and is put in the directory
         
         figurepath = figure.getDiskPath(True)
         r.pdf(figurepath, 8, 8)
         r.assign('track_names',track_names)
         r.assign('d_matrix', d_matrix)
         r('row.names(d_matrix) <- track_names')
         
         r('d <- as.dist(d_matrix)')
         if clusterMethod == 'Hierarchical clustering' and extra_option != "--select--" :
            r.assign('extra_option',extra_option) 
            r('hr <- hclust(d, method=extra_option, members=NULL)')
            r('plot(hr, ylab="Distance", hang=-1)')
            
         r('dev.off()')
         print figure.getLink('clustering results figure<br>')
         
     else :
         print 'A feature must be selected in order to compute the distance between tracks.'
Exemplo n.º 4
0
 def retrieveBenchmarkSuiteAsZipFile(self, trackNames):
     zipFile = GalaxyRunSpecificFile(['BenchmarkSuite.tar.gz'], self._galaxyFn)
     path = zipFile.getDiskPath(True)
     path =  path[0:-len(path.split('/')[-1])]
         
     # For every trackName, retrieve the trackName and copy it to a directory
     for trackName in trackNames:
         filePath = trackName.split(':')[2].split('/')
         fileName = filePath[len(filePath)-1]
         fastaFileName = GalaxyRunSpecificFile(['BenchmarkSuite/%s.fasta' % fileName.split('.')[0]], self._galaxyFn)
         self.retrieveTrack(trackName, fastaFileName.getDiskPath(True))
         
     # And finally create a zip file, and return a link pointing to it
     os.system('tar -P -czvf %sBenchmarkSuite.tar.gz %sBenchmarkSuite/' % (path, path))
         
     return zipFile.getLink("Download benchmark suite")
Exemplo n.º 5
0
    def convertToGTrack(self, filePath, fileFormat, galaxyFn, fastaFilePath=None, normalizeValues=False):
        
        predictionFile = open(filePath, 'r')
        
        out = GalaxyRunSpecificFile(['%smodified.gtrack' % filePath.split('/')[-1]], galaxyFn)
        gtrackFile = out.getFile('w')

        if fileFormat == 'weeder':
            self._convertFromWeederToGTrack(predictionFile, gtrackFile)
        elif fileFormat == 'meme':
            self._convertFromMemeToGTrack(predictionFile, gtrackFile)
        elif fileFormat == 'glimmer':
            self._convertFromGlimmerToGTrack(predictionFile, gtrackFile)
        elif fileFormat == 'prodigal':
            self._convertFromProdigalToGTrack(predictionFile, gtrackFile)
        elif fileFormat == 'genemark':
            self._convertFromGenemarkToGTrack(predictionFile, gtrackFile)
        elif fileFormat == 'blasthit':
            self._convertFromBlastToGTrack(predictionFile, gtrackFile)
        elif fileFormat == 'ymf':
            fastaFile = open(fastaFilePath, 'r')
            self._convertFromYMFToGTrack(fastaFile, predictionFile, gtrackFile)
        elif fileFormat == 'gtrack' and normalizeValues == True:
            self._normalizeGTrackValues(filePath, gtrackFile)
        return out.getDiskPath(True)
 def _createTrackFromFileName(self, filename):
     filedata = filename.split('.')
     trackName = ''
     galaxyFile = GalaxyRunSpecificFile([filename], self._galaxyFn)
     
     currentPath = '%s/%s' % (os.getcwd(), filename)
     
     if len(filedata) == 3 and filedata[1] == 'tar' and filedata[2] == 'gz':
         os.system('mkdir %s' % galaxyFile.getDiskPath(True).split('.')[0])
         trackName = self._extractZipFile(filename)
     elif len(filedata) == 2 and filedata[1] == 'gtrack':
         os.system('cp %s %s' % (currentPath, galaxyFile.getDiskPath(True)))
         trackName = 'galaxy:gtrack:%s:None' % galaxyFile.getDiskPath(True)
     else:
         raise Exception('%s is not in a valid format' % filename)
     
     return trackName
    def printTextMatrixes(cls, correlationMatrix, linkageMatrix, distanceMatrix, galaxyFn, filename, htmlCore):

        # Print correlation matrix
        corrMatrixFile = GalaxyRunSpecificFile(['corr_matrix_result_' + filename + '.txt'], galaxyFn)
        corrMatrixPath = corrMatrixFile.getDiskPath(True)
        open(corrMatrixPath, 'w').write(str(correlationMatrix))
        htmlCore.link('<br><br>View the raw text similarity/correlation matrix for this analysis',
                      corrMatrixFile.getURL())

        # Print distance matrix
        distMatrixFile = GalaxyRunSpecificFile(['dist_matrix_result_' + filename + '.txt'], galaxyFn)
        distMatrixPath = distMatrixFile.getDiskPath(True)
        open(distMatrixPath, 'w').write(str(distanceMatrix))
        htmlCore.link('<br><br>View the raw text triangular distance matrix for this analysis', distMatrixFile.getURL())

        # Print linkage matrix
        linkMatrixFile = GalaxyRunSpecificFile(['linkage_matrix_result_' + filename + '.txt'], galaxyFn)
        linkMatrixPath = linkMatrixFile.getDiskPath(True)
        open(linkMatrixPath, 'w').write(str(linkageMatrix))
        htmlCore.link('<br><br>View the raw text linkage matrix for this analysis', linkMatrixFile.getURL())
Exemplo n.º 8
0
 def collectParamsIntoFile(self):        
     parameters = GalaxyRunSpecificFile(['run_parameters.html'],self.jobFile) #just collect the parametes used into a file
     p_path = parameters.getDiskPath(True)
     p_output = open(p_path,'w')
     print>>p_output, '<html><body>'
     print>>p_output, '<ol>'
     for key in self.params.keys():
         print>>p_output, '<li>%s:%s </li>'%(key,self.params[key])
     print>>p_output, '</body></html>'
     p_output.close()
     print parameters.getLink('Parameters of this run')
    def execute(choices, galaxyFn=None, username=''):
        '''Is called when execute-button is pushed by web-user.
        Should print output as HTML to standard out, which will be directed to a results page in Galaxy history.
        If getOutputFormat is anything else than HTML, the output should be written to the file with path galaxyFn.
        If needed, StaticFile can be used to get a path where additional files can be put (e.g. generated image files).
        choices is a list of selections made by web-user in each options box.
        '''
        from time import time
        startTime = time()
        from quick.application.ExternalTrackManager import ExternalTrackManager
        from quick.util.StaticFile import GalaxyRunSpecificFile
        import os

        motifFn = ExternalTrackManager.extractFnFromGalaxyTN( choices[0].split(':'))
        observedFasta = ExternalTrackManager.extractFnFromGalaxyTN( choices[1].split(':'))

        randomGalaxyTN = choices[2].split(':')
        randomName = ExternalTrackManager.extractNameFromHistoryTN(randomGalaxyTN)
        randomGalaxyFn = ExternalTrackManager.extractFnFromGalaxyTN( randomGalaxyTN)
        randomStatic = GalaxyRunSpecificFile(['random'],randomGalaxyFn) #finds path to static file created for a previous history element (randomFn), and directs to a folder containing several files..
        #print os.listdir(randomStatic.getDiskPath())
        randomFastaPath = randomStatic.getDiskPath()

        #motifFn, observedFasta, randomFastaPath = '/Users/sandve/egne_dokumenter/_faglig/NullModels/DnaSeqExample/liver.pwm', 'liver.fa', 'randomFastas'
        testStatistic = choices[3]
        if testStatistic == 'Average of max score per sequence':
            scoreFunc = scoreMotifOnFastaAsAvgOfBestScores
        elif testStatistic == 'Sum of scores across all positions of all sequences':
            scoreFunc = scoreMotifOnFastaAsSumOfAllScores
        elif testStatistic == 'Score of Frith et al. (2004)':
            scoreFunc = lr4
        elif testStatistic == 'Product of max per sequence':
            scoreFunc = scoreMotifOnFastaAsProductOfBestScores
        else:
            raise
        
        pvals = mcPvalFromMotifAndFastas(motifFn, observedFasta, randomFastaPath, scoreFunc)
        print 'Pvals for motifs (%s) against observed (%s) vs random (%s - %s) sequences.' % (motifFn, observedFasta, randomName, randomFastaPath)
        for motif,pval in sorted(pvals.items()):
            print motif+'\t'+('%.4f'%pval)
            
        from quick.util.StaticFile import GalaxyRunSpecificFile
        from gold.application.RSetup import r, robjects
        histStaticFile = GalaxyRunSpecificFile(['pvalHist.png'],galaxyFn)
        #histStaticFile.openRFigure()
        histStaticFile.plotRHist(pvals.values(), [x/40.0 for x in range(41)], 'Histogram of p-values', xlim=robjects.FloatVector([0.0, 1.0]))
        #r.hist(robjects.FloatVector(pvals.values()), breaks=robjects.FloatVector([x/40.0 for x in range(41)]), xlim=robjects.FloatVector([0.0, 1.0]), main='Histogram of p-values' )
        #histStaticFile.closeRFigure()
        print histStaticFile.getLink('Histogram')
        print 'Time (s):', time()-startTime
 def executePairDistance(cls, genome, tracks, track_names, clusterMethod, extra_option, feature, extra_feature, galaxyFn, regSpec, binSpec):
     from gold.application.RSetup import r
     #jobFile = open(galaxyFn, 'w')
     jobFile = galaxyFn
     if feature is not None: # must use "" here because the '' does not work
         
         l = len(tracks)
         d_matrix = zeros((l,l))
         for i in range(l) :
             for j in range(l):
                 if i < j :
                     if extra_feature == "1 minus the ratio" :
                         d_matrix[i,j] = 1 - ClusteringExecution.computeDistance(genome, tracks[i], tracks[j], feature, regSpec, binSpec)
                         d_matrix[j,i] = d_matrix[i,j]
                     elif extra_feature == "1 over the ratio" :
                         d_matrix[i,j] = 1/ClusteringExecution.computeDistance(genome, tracks[i], tracks[j], feature, regSpec, binSpec)
                         d_matrix[j,i] = d_matrix[i,j]
                     else :
                         d_matrix[i,j] = ClusteringExecution.computeDistance(genome, tracks[i], tracks[j], feature, regSpec, binSpec)
                         d_matrix[j,i] = d_matrix[i,j] 
         
         figure = GalaxyRunSpecificFile(['cluster_trakcs_result_figure.pdf'], jobFile) #this figure is runspecific and is put in the directory
         
         figurepath = figure.getDiskPath(True)
         r.pdf(figurepath, 8, 8)
         r.assign('track_names',track_names)
         r.assign('d_matrix', d_matrix)
         r('row.names(d_matrix) <- track_names')
         
         r('d <- as.dist(d_matrix)')
         if clusterMethod == 'Hierarchical clustering' and extra_option != "--select--" :
            r.assign('extra_option',extra_option) 
            r('hr <- hclust(d, method=extra_option, members=NULL)')
            r('plot(hr, ylab="Distance", hang=-1)')
            
         r('dev.off()')
         print figure.getLink('clustering results figure<br>')
Exemplo n.º 11
0
    def MakeHeatmapFromTracks(cls, galaxyFn, **trKwArgs):
        tr1 = trKwArgs.get('tr1')
        tr2 = trKwArgs.get('tr2')
        tr3 = trKwArgs.get('tr3')
        tableRowEntryTemplate = """<tr><td>%s</td><td><a href="%s"><img src="%s" /></a></td></tr>"""
        #htmlTemplate = '''<head><link rel="stylesheet" type="text/css" href="image_zoom/styles/stylesheet.css" /><script language="javascript" type="text/javascript" src="image_zoom/scripts/mootools-1.2.1-core.js"></script><script language="javascript" type="text/javascript" src="image_zoom/scripts/mootools-1.2-more.js"></script><script language="javascript" type="text/javascript" src="image_zoom/scripts/ImageZoom.js"></script>
        #                <script language="javascript" type="text/javascript" >
        #                liste = %s;
        #                function point_it(event){
        #                        pos_x = event.offsetX?(event.offsetX):event.pageX-document.getElementById("zoomer_image").offsetLeft;
        #                        pos_y = event.offsetY?(event.offsetY):event.pageY-document.getElementById("zoomer_image").offsetTop;
        #                        pos_x = Math.floor(pos_x/10);
        #                        pos_y = Math.floor(pos_y/10);
        #                        alert("Hello World!, you clicked: " +liste[pos_y][pos_x]);
        #                }</script>
        #                </head><body><div id="container"><!-- Image zoom start --><div id="zoomer_big_container"></div><div id="zoomer_thumb">		<a href="%s" target="_blank" ><img src="%s" /></a></div><!-- Image zoom end --></div></body></html>'''
        javaScriptCode = '''
liste = %s;
    function point_it(event){
            pos_x = event.offsetX?(event.offsetX):event.pageX-document.getElementById("zoomer_image").offsetLeft;
            pos_y = event.offsetY?(event.offsetY):event.pageY-document.getElementById("zoomer_image").offsetTop;
            pos_x = Math.floor(pos_x/10);
            pos_y = Math.floor(pos_y/10);
            alert("Hello World!, you clicked: " +liste[pos_y][pos_x]);
    }
'''

        
        
        ResultDicts = [cls.getValuesFromBedFile(tr1,colorPattern=(1,0,0))]
        ResultDicts += [cls.getValuesFromBedFile(tr2,colorPattern=(0,1,0))] if tr2 else []
        ResultDicts += [cls.getValuesFromBedFile(tr3,colorPattern=(0,0,1))] if tr3 else []
    
    
        htmlTableContent = []
        resultDict = cls.syncResultDict(ResultDicts)
        
        for chrom, valList in resultDict.items():
            areaList = []
            #For doing recursive pattern picture
            posMatrix = cls.getResult(len(valList), 2,2)
            javaScriptList = [[0 for v in xrange(len(posMatrix[0])) ] for t in xrange(len(posMatrix))]
            rowLen = len(posMatrix[0])
            im = Image.new("RGB", (rowLen, len(posMatrix)), "white")
            for yIndex, row in enumerate(posMatrix):
                for xIndex, elem in enumerate(row):
                    im.putpixel((xIndex, yIndex), valList[elem])
                    region = yIndex*rowLen + xIndex
                    javaScriptList[yIndex][xIndex] = chrom+':'+str(elem*10)+'-'+str((elem+1)*10)+': '+repr([ round((255-v)/255.0 ,2 ) for v in valList[elem]])
                    #areaList.append(areaTemplate % (xIndex*10, yIndex*10, xIndex*11, yIndex*11, repr(valList[elem])))
            im2 = im.resize((len(posMatrix[0])*10, len(posMatrix)*10))
            
            origSegsFile = GalaxyRunSpecificFile([chrom+'smallPic.png'], galaxyFn)
            origSegsFn = origSegsFile.getDiskPath(True)
            bigSegsFile = GalaxyRunSpecificFile([chrom+'BigPic.png'], galaxyFn)
            bigSegsFn = bigSegsFile.getDiskPath(True)
            
            im.save(origSegsFn)
            im2.save(bigSegsFn)
            
            
            #open('Recursive/'+chrom+'Zooming.html','w').write(htmlTemplate % (str(javaScriptList), chrom+'Big.png',chrom+'.png'))
            core = HtmlCore()
            core.begin( extraJavaScriptFns=['mootools-1.2.1-core.js', 'mootools-1.2-more.js', 'ImageZoom.js'], extraJavaScriptCode=javaScriptCode % str(javaScriptList), extraCssFns=['image_zoom.css'] )
            core.styleInfoBegin(styleId='container')
            core.styleInfoBegin(styleId='zoomer_big_container')
            core.styleInfoEnd()
            core.styleInfoBegin(styleId='zoomer_thumb')
            core.link(url=bigSegsFile.getURL(), text=str(HtmlCore().image(origSegsFile.getURL())), popup=True)
            core.styleInfoEnd()
            core.styleInfoEnd()
            core.end()
            htmlfile = GalaxyRunSpecificFile([chrom+'.html'], galaxyFn)
            htmlfile.writeTextToFile(str(core))
            htmlTableContent.append(tableRowEntryTemplate % (chrom, htmlfile.getURL(), origSegsFile.getURL()))
            
            #return str(core)  #htmlTemplate % (str(javaScriptList), bigSegsFn, origSegsFn)
        
            #######
            
            # FOr doing normal picture
            #columns = int(round((len(valList)/1000)+0.5))
            #im = Image.new("RGB", (1000, columns), "white")        
            #y=-1    
            #for index, valuTuple in enumerate(valList):
            #    x = index%1000
            #
            #    if x == 0:
            #        y+=1
            #    try:
            #        im.putpixel((x, y), valuTuple)
            #    except:
            #        pass
            #im.save(chrom+'.png')
            #htmlTableContent.append(tableRowEntryTemplate % (chrom, chrom+'.png'))
        htmlPageTemplate = """<html><body><table border="1">%s</table></body></html>"""
        return htmlPageTemplate % ('\n'.join(htmlTableContent))
    def execute(choices, galaxyFn=None, username=''):
        '''Is called when execute-button is pushed by web-user.
        Should print output as HTML to standard out, which will be directed to a results page in Galaxy history.
        If getOutputFormat is anything else than HTML, the output should be written to the file with path galaxyFn.
        If needed, StaticFile can be used to get a path where additional files can be put (e.g. generated image files).
        choices is a list of selections made by web-user in each options box.
        '''
        import subprocess
        import os
        from quick.util.StaticFile import GalaxyRunSpecificFile
        from config.Config import HB_SOURCE_CODE_BASE_DIR
        from quick.application.ExternalTrackManager import ExternalTrackManager
        
        tempInStaticFile = GalaxyRunSpecificFile(['tempIn.txt'], galaxyFn)
        outStaticFile = GalaxyRunSpecificFile(['tempOut.fasta'], galaxyFn)
        #print os.getcwd()
        inFn = ExternalTrackManager.extractFnFromGalaxyTN( choices[0].split(':') )
        #print inFn
        tempOutFn = outStaticFile.getDiskPath(True)
        #print tempOutFn
        os.chdir(HB_SOURCE_CODE_BASE_DIR + '/third_party/nonpython')
        #print outStaticFile.getLink('output')
        markovOrder = int(choices[1])

        seqs = []     
        for line in open(inFn):
            if line.startswith('>'):
                seqs.append( [line[1:].strip(),[]] )
            else:
                seqs[-1][1].append(line.strip())
        for seq in seqs:
            seq[1] = ''.join(seq[1])
            
        pureSequence = ''.join( [seq[1] for seq in seqs])
        totalSeqLen = len(pureSequence)
        #pureSequence = ''.join([line.replace('\n','') for line in open(inFn) if not line.startswith('>')])
        tempInStaticFile.writeTextToFile(pureSequence)
        numSamples = int(choices[2])
        
        if numSamples>1:
            zipOutStatic = GalaxyRunSpecificFile(['randomFastas.zip'], galaxyFn)                
            zipOut = zipfile.ZipFile(zipOutStatic.getDiskPath(True),'w')
            
        for iteration in range(numSamples):
            if numSamples>1:
                fastaOutStatic = GalaxyRunSpecificFile(['random','s%s.fa'%iteration], galaxyFn)
                fastaOutFn = fastaOutStatic.getDiskPath(True)
            else:
                fastaOutFn = galaxyFn
            #fastaOutStatic = GalaxyRunSpecificFile(['random%s'%iteration], galaxyFn)
            #subprocess.call('javac',shell=True)
            #subprocess.call('javac',shell=False)
            #subprocess.call('javac MarkovModel.java',shell=True)
            subprocess.call('java MarkovModel %s %s %s >%s' % (tempInStaticFile.getDiskPath(), markovOrder, totalSeqLen, tempOutFn), shell=True )
            #subprocess.call('javac third_party/nonpython/MarkovModel.java')
            #subprocess.call('java third_party/nonpython/MarkovModel.java')
            pureMarkovSequence = open(tempOutFn).readline().strip()
            pmsIndex = 0
            fastaOutF = open(fastaOutFn,'w')
            for seq in seqs:
                fastaOutF.write('>'+seq[0]+os.linesep)
                nextPmsIndex = pmsIndex+len(seq[1])
                #seq.append(pureMarkovSequence[pmsIndex:nextPmsIndex])
                fastaOutF.write( pureMarkovSequence[pmsIndex:nextPmsIndex] + os.linesep)
                pmsIndex = nextPmsIndex
            fastaOutF.close()
            assert pmsIndex == totalSeqLen == len(pureMarkovSequence), (pmsIndex, totalSeqLen , len(pureMarkovSequence))
            if numSamples>1:
                #print 'Adding %s to archive' % fastaOutFn.split('/')[-1]
                zipOut.write(fastaOutFn, fastaOutFn.split('/')[-1])

        if numSamples>1:
            zipOut.close()
            print zipOutStatic.getLink('Zipped random sequences')
Exemplo n.º 13
0
 def getIntersectedRegionsStaticFileWithContent(self):
     intersectedRegs = self.getIntersectedReferenceBins()
     staticFile = GalaxyRunSpecificFile(['intersected_regions.bed'],self._galaxyFn)
     self.writeRegionListToBedFile(intersectedRegs, staticFile.getDiskPath() )
     return staticFile
Exemplo n.º 14
0
    def findTFsTargetingGenes(cls, genome, tfSource, ensembleGeneIdList,upFlankSize, downFlankSize, geneSource, galaxyFn):
        #galaxyFn = '/usit/insilico/web/lookalike/galaxy_dist-20090924-dev/database/files/003/dataset_3347.dat'
        #print 'overriding galaxyFN!: ', galaxyFn
        uniqueWebPath = getUniqueWebPath(extractIdFromGalaxyFn(galaxyFn))

        assert genome in ['mm9','hg18'] #other genomes not supported. TF id links do not specify genome for pre-selection of analysis
        
        #if tfSource == 'UCSC tfbs conserved':
        #    tfTrackName = ['Gene regulation','TFBS','UCSC prediction track']
        #else:
        #    raise
        tfTrackNameMappings = TfInfo.getTfTrackNameMappings(genome)
        tfTrackName = tfTrackNameMappings[tfSource]
                
        #Get gene track
        #targetGeneRegsTempFn = uniqueWebPath + os.sep + 'geneRegs.bed'
        #geneRegsTrackName = GenomeInfo.getStdGeneRegsTn(genome)
        #geneRegsFn = getOrigFn(genome, geneRegsTrackName, '.category.bed')
        #GalaxyInterface.getGeneTrackFromGeneList(genome, geneRegsTrackName, ensembleGeneIdList, targetGeneRegsTempFn )
        
        if not (upFlankSize == downFlankSize == 0):            
            unflankedGeneRegsTempFn = uniqueWebPath + os.sep + '_geneRegs.bed'
            flankedGeneRegsTempFn  = uniqueWebPath + os.sep + 'flankedGeneRegs.bed'
            geneRegsTrackName = GenomeInfo.getStdGeneRegsTn(genome)
            #geneRegsFn = getOrigFn(genome, geneRegsTrackName, '.category.bed')
            GalaxyInterface.getGeneTrackFromGeneList(genome, geneRegsTrackName, ensembleGeneIdList, unflankedGeneRegsTempFn )
            GalaxyInterface.expandBedSegments(unflankedGeneRegsTempFn, flankedGeneRegsTempFn, genome, upFlankSize, downFlankSize)
            #flankedGeneRegsExternalTN = ['external'] +galaxyId +  [flankedGeneRegsTempFn]
            regSpec, binSpec = 'file', flankedGeneRegsTempFn
        else:
            regSpec, binSpec = '__genes__', ','.join(ensembleGeneIdList)

        res = cls._runCategoryPointCount(genome, regSpec, binSpec, tfTrackName)

        #trackName1 = tfTrackName
        #
        #analysisDef = 'Category point count: Number of elements each category of track1 (with overlaps)'+\
        #          '[tf1:=SegmentToStartPointFormatConverter:]'+\
        #          '-> FreqByCatStat'
        ##assert len(ensembleGeneIdList)==1
        ##geneId = ensembleGeneIdList[0]
        #
        #print '<div class="debug">'        
        #userBinSource, fullRunArgs = GalaxyInterface._prepareRun(trackName1, None, analysisDef, regSpec, binSpec, genome)
        #res = AnalysisDefJob(analysisDef, trackName1, None, userBinSource, **fullRunArgs).run()
        #
        #print res        
        ##GalaxyInterface._viewResults([res], galaxyFn)
        #print '</div>'
        tfs = res.getResDictKeys()
        
        genesPlural = 's' if len(ensembleGeneIdList)>1 else ''
        tfsPlural = 's' if len(tfs)!=1 else ''
        print '<p>There are %i TF%s targeting your gene%s of interest (%s), using "%s" as source of TF occurrences.</p>' % (len(tfs), tfsPlural, genesPlural, ','.join(ensembleGeneIdList), tfSource)
        
        expansionStr = ' flanked' if not (upFlankSize == downFlankSize == 0) else ''                

        idHtmlFileNamer = GalaxyRunSpecificFile(['allTfIds.html'],galaxyFn)
        idHtmlFileNamer.writeTextToFile('<br>'.join(['<a href=%s/hyper?dbkey=%s&track1=%s&track2=>%s</a>'%(URL_PREFIX, genome, quote(':'.join(tfTrackName+[tf])), tf) for tf in tfs]))
        #idHtmlFileNamer.writeTextToFile('<br>'.join(['<a href=/hbdev/hyper?track1=%s&track2=>%s</a>'%( ':'.join(tfTrackName+[tf]), tf) for tf in tfs]))
        print '<p>', idHtmlFileNamer.getLink('Inspect html file'), ' of all TF IDs occurring 1 or more times within your%s gene region%s of interest, with each TF ID linking to analysis with this TF pre-selected.</p>' % (expansionStr, genesPlural)

        idFileNamer = GalaxyRunSpecificFile(['allTfIds.txt'],galaxyFn)
        idFileNamer.writeTextToFile(os.linesep.join(tfs) + os.linesep)
        print '<p>', idFileNamer.getLink('Inspect text file'), ' listing all TF IDs occurring 1 or more times within your%s gene region%s of interest.</p>' % (expansionStr, genesPlural)
    
        extractedTfbsFileNamer = GalaxyRunSpecificFile(['tfbsInGeneRegions.bed'],galaxyFn)
        GalaxyInterface.extractTrackManyBins(genome, tfTrackName, regSpec, binSpec, True, 'bed', False, False, extractedTfbsFileNamer.getDiskPath())
        print '<p>', extractedTfbsFileNamer.getLink('Inspect bed-file'), 'of all TF binding sites occurring within your%s gene region%s of interest.</p>' % (expansionStr, genesPlural)
        
        #idFile = idFileNamer.getFile()
        #idFile.write(', '.join([str(bin.val) for bin in targetBins if res[bin][resDictKey]>0]) + os.sep)
        #idFile.close()
        
        #print idFileNamer.getLink('Text file'), ' of TF IDs'
        
        #GalaxyInterface.run(tfTrackName, tcGeneRegsExternalTN, analysisDef, regSpec, binSpec, genome, galaxyFn)
        #GalaxyInterface.run(':'.join(tfTrackName), ':'.join(tcGeneRegsExternalTN), analysisDef, regSpec, binSpec, genome, galaxyFn)
                
Exemplo n.º 15
0
    def findTFsOccurringInRegions(cls, genome, tfSource, regionsBedFn, upFlankSize, downFlankSize, galaxyFn):
        uniqueWebPath = getUniqueWebPath(extractIdFromGalaxyFn(galaxyFn))
        #assert genome == 'hg18' #other genomes not supported. TF id links do not specify genome for pre-selection of analysis
        
        tfTrackNameMappings = TfInfo.getTfTrackNameMappings(genome)
        assert tfTrackNameMappings != {}, 'No TF info for genome: %s' % genome
        
        tfTrackName = tfTrackNameMappings[tfSource]
                
        if (upFlankSize == downFlankSize == 0):
            flankedRegionsFn = regionsBedFn
        else:
            flankedRegionsFn= uniqueWebPath + os.sep + 'flankedRegs.bed'
            GalaxyInterface.expandBedSegments(regionsBedFn, flankedRegionsFn, genome, upFlankSize, downFlankSize)

        regSpec, binSpec = 'bed', flankedRegionsFn
        res = cls._runCategoryPointCount(genome, regSpec, binSpec, tfTrackName)

        tfNames = res.getResDictKeys()
        #print 'RES: ', res.getGlobalResult()[tfNames[0]], type(res.getGlobalResult()[tfNames[0]])
        import third_party.safeshelve as safeshelve
        pwm2tfids = safeshelve.open(os.sep.join([HB_SOURCE_CODE_BASE_DIR,'data','pwm2TFids.shelf']), 'r')
        tf2class = safeshelve.open(os.sep.join([HB_SOURCE_CODE_BASE_DIR,'data','TfId2Class.shelf']), 'r')
        pwmName2id= safeshelve.open(os.sep.join([HB_SOURCE_CODE_BASE_DIR,'data','pwmName2id.shelf']), 'r')
        #print tfNames[0],tfNames[1], ' VS ', pwm2tfids.keys()[0], len(pwm2tfids)
        #tfs = list(reversed(sorted([(res.getGlobalResult()[tf], tf, '%s (%i hits (class %s))'%(tf, res.getGlobalResult()[tf]), '/'.join([tf2class[x] for x in pwm2tfids[tf]]) ) for tf in tfNames]))) #num hits, tfName, tfTextInclHits
        tfs = list(reversed(sorted([(res.getGlobalResult()[tf], tf, '%s (%i hits )'%(tf, res.getGlobalResult()[tf]) + \
                                     (' (class: %s)'%'/'.join(set([str(tf2class.get(x)) for x in pwm2tfids[pwmName2id[tf]] if x in tf2class]))\
                                      if (tf in pwmName2id and pwmName2id[tf] in pwm2tfids and any([x in tf2class for x in pwm2tfids[pwmName2id[tf]]]))\
                                    else '') ) \
                                    for tf in tfNames])) ) #num hits, tfName, tfTextInclHits
        
        tfsPlural = 's' if len(tfs)!=1 else ''
        print '<p>There are %i TF%s targeting your regions of interest, using "%s" as source of TF occurrences.</p>' % (len(tfs), tfsPlural, tfSource)
        
        expansionStr = ' flanked' if not (upFlankSize == downFlankSize == 0) else ''                

        idHtmlFileNamer = GalaxyRunSpecificFile(['allTfIds.html'],galaxyFn)
        idHtmlFileNamer.writeTextToFile('<br>'.join(['<a href=/hbdev/hyper?track1=%s&track2=>%s</a>'%( quote(':'.join(tfTrackName+[tf[1]])), tf[2]) for tf in tfs]))
        print '<p>', idHtmlFileNamer.getLink('Inspect html file'), ' of all TF IDs occurring 1 or more times within your%s regions of interest, with each TF ID linking to analysis with this TF pre-selected.</p>' % (expansionStr)

        idFileNamer = GalaxyRunSpecificFile(['allTfIds.txt'],galaxyFn)
        idFileNamer.writeTextToFile(os.linesep.join([tf[2] for tf in tfs]) + os.linesep)
        print '<p>', idFileNamer.getLink('Inspect text file'), ' listing all TF IDs occurring 1 or more times within your%s regions of interest.</p>' % (expansionStr)
    
        extractedTfbsFileNamer = GalaxyRunSpecificFile(['tfbsInGeneRegions.bed'],galaxyFn)
        GalaxyInterface.extractTrackManyBins(genome, tfTrackName, regSpec, binSpec, True, 'bed', False, False, extractedTfbsFileNamer.getDiskPath(), True)
        print '<p>', extractedTfbsFileNamer.getLoadToHistoryLink('Inspect bed-file'), 'of all TF binding sites occurring within your%s regions of interest.</p>' % (expansionStr)

        for dummy,tf,dummy2 in tfs:            
            extractedTfbsFileNamer = GalaxyRunSpecificFile([tf+'_tfbsInGeneRegions.bed'],galaxyFn)
            GalaxyInterface.extractTrackManyBins(genome, tfTrackName+[tf], regSpec, binSpec, True, 'bed', False, False, extractedTfbsFileNamer.getDiskPath())
            print '<p>', extractedTfbsFileNamer.getLoadToHistoryLink('Binding sites of the TF %s' %tf, 'bed'), 'occurring within your%s regions of interest (bed-file).</p>' % (expansionStr)
 def executeReferenceTrack(cls, genome, tracks, track_names, clusterMethod, extra_option, distanceType, kmeans_alg, galaxyFn, regSpec, binSpec, numreferencetracks=None, refTracks=None, refFeatures=None, yesNo=None, howMany=None, upFlank=None, downFlank=None):
     from gold.application.RSetup import r
     jobFile = open(galaxyFn, 'w')
     print>>jobFile, 'PARAMS: ', dict(zip('genome, tracks, track_names, clusterMethod, extra_option, distanceType, kmeans_alg, regSpec, binSpec'.split(','), [repr(v)+'<br>'for v in [genome, tracks, track_names, clusterMethod, extra_option, distanceType, kmeans_alg, regSpec, binSpec]]))
     print>>jobFile, '<br><br>To run:<br>', '$clusterByReference', (genome, '$'.join([':'.join(t) for t in tracks]), ':'.join(track_names)  , clusterMethod, extra_option, distanceType, kmeans_alg, regSpec, binSpec,numreferencetracks, refTracks, refFeatures, yesNo, howMany, upFlank, downFlank), '<br><br>'
     print>>jobFile, 'signature of method clusterByReference:<br>', 'clusterByReference(genome, tracksStr, track_namesStr, clusterMethod, extra_option, distanceType, kmeans_alg, regSpec, binSpec, numreferencetracks=None, refTracks=None, refFeatures=None, yesNo=None, howMany=None, upFlank=None, downFlank=None)<br><br><br>'
     prettyTrackNames = [v[-1].replace("RoadMap_","").replace('.H3K4me1','') for v in tracks]
     
     #prettyTrackNames = [prettyPrintTrackName(v) for v in tracks]
     #paramNames = ['numreferencetracks', 'refTracks', 'refFeatures', 'yesNo', 'howMany', 'upFlank', 'downFlank']
     #for index, value in enumerate([numreferencetracks, refTracks, refFeatures, yesNo, howMany, upFlank, downFlank]):
     #    if value != None:
     #        print paramNames[index]+'='+ str(value),
     #print ''
     
     reftrack_names = [] #for use in creating the heatmap (as the column names)
     
     options = [] #for the case using refTracks, options contains feature for every refTrack, chosen by user.
     
     if numreferencetracks :
         for i in range(int(numreferencetracks)):
             ref_i = refTracks[i].split(":") #name of refTrack is being used to construct the name of expanded refTrack
             #refTracks.append(ref_i) #put the refTrack into refTracks list
             reftrack_names.append(ref_i[-1])
             temp_opt1 = 'ref'+str(i)+'feature'
             options+= [] if refFeatures[i] == None else [refFeatures[i]]
             if  yesNo[i] == "Yes" and howMany[i] != '--select--':
                 for expan in range(int(howMany[i])) :
                     reftrack_names.append(ref_i[-1]+'_'+ upFlank[i][expan])
                     upFlank = int(upFlank[i][expan])
                     downFlank = int(downFlank[i][expan])
                     withinRunId = str(i+1)+' expansion '+str(expan + 1)
                     outTrackName = GalaxyInterface.expandBedSegmentsFromTrackNameUsingGalaxyFn(ref_i, genome, upFlank, downFlank, galaxyFn, withinRunId) #outTrackName is unique for run
                     refTracks.append(outTrackName) #put the expanded track into refTracks list
                     options.append(options[-1]) # use chosen feature for refTack as valid feature for the expanded
         
         for index, track in enumerate(refTracks) :
             #print track, '<br>'
             if type(track) == str :
                 track = track.split(":")
             refTracks[index] = track[:-1] if track[-1] == "-- All subtypes --" else track
             
     if len(refTracks) > 0:
         
         trackFormats = [TrackInfo(genome,track).trackFormatName for track in tracks]
         
         trackLen = len(tracks)
         refLen = len(refTracks)
         f_matrix = zeros((trackLen, refLen))
         for i in range(trackLen):
             for j in range(refLen):
                 #print 'len(options), refLen, len(tracks), trackLen, len(trackFormats):', len(options), refLen, len(tracks), trackLen, len(trackFormats)
                 f_matrix[i,j] = cls.extract_feature(genome,tracks[i],refTracks[j],options[j], regSpec, binSpec, trackFormats[i])
         r.assign('track_names',prettyTrackNames) #use as track names, will be shown in clustering figure
         r.assign('reftrack_names',reftrack_names)
         r.assign('f_matrix',f_matrix)
         r.assign('distanceType',distanceType)
         r('row.names(f_matrix) <- track_names')
         r('colnames(f_matrix) <- reftrack_names')
        
         if clusterMethod == 'Hierarchical clustering' and extra_option != "--select--":
             figure = GalaxyRunSpecificFile(['cluster_tracks_result_figure.pdf'], galaxyFn)
             figurepath = figure.getDiskPath(True) 
             r.pdf(figurepath, 8,8)
             r('d <- dist(f_matrix, method=distanceType)')
             #print r.f_matrix
             #print r.d
             r_f_matrixFile = GalaxyRunSpecificFile(['f-matrix.robj'], galaxyFn)
             r.assign('f_matrix_fn', r_f_matrixFile.getDiskPath(True))
             r('dput(f_matrix, f_matrix_fn)')
             print>>jobFile, r_f_matrixFile.getLink('feature_matrix')
             
             r_f_matrixFile = GalaxyRunSpecificFile(['f-matrix.txt'], galaxyFn)
             r_f_matrixFile.writeTextToFile(str(f_matrix)+'\n\n'+str(r.d))
             print>>jobFile, r_f_matrixFile.getLink('r.f_matrix & r.d')
             r.assign('extra_option',extra_option)
             r('hr <- hclust(d, method=extra_option, members=NULL)')
             r('plot(hr, ylab="Distance", hang=-1)')
             
             r('dev.off()')
             print>>jobFile, figure.getLink('clustering results figure<br>')
         elif clusterMethod == 'K-means clustering' and extra_option != "--select--" and kmeans_alg != "--select--":
             textFile = GalaxyRunSpecificFile(['result_of_kmeans_clustering.txt'], galaxyFn)
             textFilePath = textFile.getDiskPath(True)
             extra_option = int(extra_option)
             r.assign('extra_option',extra_option)
             r.assign('kmeans_alg',kmeans_alg)
             r('hr <- kmeans(f_matrix,extra_option,algorithm=kmeans_alg)') #the number of cluster is gotten from clusterMethod+ tag, instead of 3 used here
            
             kmeans_output = open(textFilePath,'w')
             clusterSizes = r('hr$size') #size of every cluster
             
             withinSS = r('hr$withinss')
             clusters = array(r('hr$cluster')) #convert to array in order to handle the index more easily
             track_names = array(track_names) 
             for index1 in range(extra_option) : #extra_option actually the number of clusters
                 trackInCluster = [k for k,val in clusters.items() if val == index1]
                
                 print>>kmeans_output, 'Cluster %i(%s objects) : ' % (index1+1, str(clusterSizes[index1]))
                 for name in trackInCluster :
                     print>>kmeans_output, name
                    
                 print>>kmeans_output, 'Sum of square error for this cluster is : '+str(withinSS[index1])+'\n'
             kmeans_output.close()
             print>>jobFile, textFile.getLink('Detailed result of kmeans clustering <br>') 
        
         heatmap = GalaxyRunSpecificFile(['heatmap_figure.png'], galaxyFn)
         heatmap_path = heatmap.getDiskPath(True)
         r.png(heatmap_path, width=800, height=700)
         r('heatmap(f_matrix, col=cm.colors(256), Colv=NA, scale="none", xlab="", ylab="", margins=c(10,10))')#Features cluster tracks
         r('dev.off()')
        
         print>>jobFile, heatmap.getLink('heatmap figure <br>')
         cls.print_data(f_matrix, jobFile)
        
     else :
         print 'Have to specify a set of refTracks'
 def executeSelfFeature(cls, genome, tracks, track_names, clusterMethod, extra_option, feature, distanceType, kmeans_alg, galaxyFn, regSpec, binSpec):
     from gold.application.RSetup import r
     #regSpec, binSpec = 'bed', '/usit/invitro/data/galaxy/galaxy-dist-hg-dev/./database/files/017/dataset_17084.dat'
     
     jobFile = open(galaxyFn, 'w')
     print>>jobFile, 'PARAMS: ', dict(zip('genome, tracks, track_names, clusterMethod, extra_option, feature, distanceType, kmeans_alg, regSpec, binSpec'.split(','), [repr(v)+'<br>'for v in [genome, tracks, track_names, clusterMethod, extra_option, feature, distanceType, kmeans_alg,regSpec, binSpec]]))
     print>>jobFile, '<br><br>To run:<br>$clusterBySelfFeature', (genome, '$'.join([':'.join(t) for t in tracks]), ':'.join(track_names)  , clusterMethod, extra_option, feature, distanceType, kmeans_alg, regSpec, binSpec), '<br><br>'
     print>>jobFile, 'signature of method clusterBySelfFeature:<br>', 'clusterBySelfFeature(genome, tracksStr, track_namesStr, clusterMethod, extra_option, feature, distanceType, kmeans_alg, regSpec, binSpec):<br><br><br>'
     prettyTrackNames = [v[-1].replace('RoadMap_','').replace('.H3K4me1','') for v in tracks]
     #prettyTrackNames = [prettyPrintTrackName(v, shortVersion=True) for v in tracks]
     f_matrix = cls.construct_feature_matrix(genome, tracks, feature, regSpec, binSpec)
     print>>jobFile, 'dir f_matrix: ', dir(f_matrix), regSpec, binSpec
     userBinSource = GalaxyInterface._getUserBinSource(regSpec,binSpec,genome)
     r.assign('bin_names',[str(bin)  for binIndex, bin in enumerate(sorted(list(userBinSource)))])
     r.assign('track_names',prettyTrackNames) #use as track names, will be shown in clustering figure
     r.assign('f_matrix',f_matrix)
     r.assign('distanceType',distanceType)
     r('row.names(f_matrix) <- track_names')
     r('colnames(f_matrix) <- bin_names')
     
     if clusterMethod == 'Hierarchical clustering' and extra_option != "--select--" :
         #print 'galaxyFn: ', galaxyFn
         figure = GalaxyRunSpecificFile(['cluster_tracks_result_figure.pdf'], galaxyFn)
         figurepath = figure.getDiskPath(True)
         r.pdf(figurepath)
         r('d <- dist(f_matrix, method=distanceType)')
         r_f_matrixFile = GalaxyRunSpecificFile(['f-matrix.robj'], galaxyFn)
         #', '.join([str(v) for v in row])
         r.assign('f_matrix_fn', r_f_matrixFile.getDiskPath(True))
         r('dput(f_matrix, f_matrix_fn)')
         #r_f_matrixFile.writeTextToFile(', '.join(cls.getFlattenedMatrix(f_matrix)) + '\n\nTrack names: '+', '.join(prettyTrackNames)+'\n\nNumber of tracks: '+str(len(prettyTrackNames))+'\n\nbins: +)
         #r_f_matrixFile.writeTextToFile()
         
         
         #r_f_matrixFile.writeTextToFile(str(f_matrix)+'\n\n'+str(r.d))
         print>>jobFile, r_f_matrixFile.getLink('feature_matrix')
         r.assign('extra_option',extra_option)
         r('hr <- hclust(d, method=extra_option, members=NULL)')
         r('plot(hr, ylab="Distance", hang=-1)')
         r('dev.off()')
         print>>jobFile, figure.getLink('clustering results figure<br>')
         
         heatmap = GalaxyRunSpecificFile(['heatmap_figure.pdf'], galaxyFn)
         heatmap_path = heatmap.getDiskPath(True)
         
         r.pdf(heatmap_path)
         r('heatmap(f_matrix, col=cm.colors(256), distfun=function(c) dist(c, method=distanceType), hclustfun=function(c) hclust(c, method=extra_option, members=NULL),Colv=NA, scale="none", xlab="", ylab="", cexRow=0.5, cexCol=0.5, margin=c(8,10))')#Features cluster tracks
         r('dev.off()')
         print>>jobFile, r('dimnames(f_matrix)')
         print>>jobFile, heatmap.getLink('heatmap figure <br>')
     elif clusterMethod == 'K-means clustering' and extra_option != "--select--" and kmeans_alg != "--select--":
         textFile = GalaxyRunSpecificFile(['result_of_kmeans_clustering.txt'], galaxyFn)
         textFilePath = textFile.getDiskPath(True)
         extra_option = int(extra_option)
         r.assign('kmeans_alg',kmeans_alg)
         r.assign('extra_option',extra_option)
         r('hr <- kmeans(f_matrix,extra_option,algorithm=kmeans_alg)') #the number of cluster is gotten from clusterMethod+ tag, instead of 3 used here
         kmeans_output = open(textFilePath,'w')
         clusterSizes = r('hr$size') #size of every cluster
         withinSS = r('hr$withinss')
         clusters = r('hr$cluster')
         for index1 in range(extra_option) : #extra_option actually the number of clusters
            #trackInCluster = [k for k,val in clusters.items() if val == index1]
            trackInCluster = [k+1 for k,val in enumerate(clusters) if val == index1+1] #IS THIS CORRECT, I.E. SAME AS ABOVE??
            
            print>>kmeans_output, 'Cluster %i(%s objects) : ' % (index1+1, str(clusterSizes[index1]))
            for name in trackInCluster :
                print>>kmeans_output, name, '(This result may be a bit shaky afters some changes in rpy access)'
                
            print>>kmeans_output, 'Sum of square error for this cluster is : '+str(withinSS[index1])+'\n'
            
         kmeans_output.close()
         print>>jobFile, textFile.getLink('Detailed result of kmeans clustering <br>')
     
     cls.print_data(f_matrix, jobFile)
     '''