def FromQuilt( package: str = DEFAULT_QUILT_PKG, hash: str = None, version: str = DEFAULT_QUILT_VERSION, tag: str = None, force: bool = True, ) -> object: """Create a GroupsData object from quilt.""" quilt.install( package=package, version=version, force=force, tag=tag, hash=hash, ) cc_pkg = quilt.load(DEFAULT_QUILT_PKG) return GroupsData.FromDataFrame(cc_pkg.data.group_definitions())
def get_pkg(user: str, package: str, hash_key=None, force=True) -> pd.DataFrame: r""" Parameters ---------- user package hash_key force Returns ------- """ pkg_path = f'{user}/{package}' quilt.install(pkg_path, hash=hash_key, force=force) return quilt.load(pkg_path)
def get_deepbedmap_model_inputs( window_bound: rasterio.coords.BoundingBox, padding: int = 1000, use_whole_rema: bool = False, ) -> (np.ndarray, np.ndarray, np.ndarray, np.ndarray): """ Outputs one large tile for each of: BEDMAP2, REMA, MEASURES Ice Flow Velocity and Antarctic Snow Accumulation according to a given window_bound in the form of (xmin, ymin, xmax, ymax). """ data_prep = _load_ipynb_modules("data_prep.ipynb") if window_bound == rasterio.coords.BoundingBox( left=-1_594_000.0, bottom=-166_500.0, right=-1_575_000.0, top=-95_500.0 ): # Quickly pull from cached quilt storage if using (hardcoded) test region quilt.install(package="weiji14/deepbedmap/model/test", force=True) pkg = quilt.load(pkginfo="weiji14/deepbedmap/model/test") X_tile = pkg.X_tile() W1_tile = pkg.W1_tile() W2_tile = pkg.W2_tile() W3_tile = pkg.W3_tile()
#!/usr/bin/env python3.6 import quilt import const import util node1 = quilt.load(const.PKG, hash=const.HASH1) node2 = quilt.load(const.PKG) # latest # Read jsonl jsonl1 = node1.dump_json() jsonl2 = node2.dump_json() print(util.read_jsonl(jsonl1)) print(util.read_jsonl(jsonl2)) # Read text text1 = node1.dump_txt() text2 = node2.dump_txt() print(util.read_text(text1)) print(util.read_text(text2))
copyTime = time.time() - t print('########Copy Completed#########') FilterAndSavePandasTable(folds, allImageIDs, annList, packagePath, logPath) print('######## Panda Table Generated#########') GenerateREADME(packagePath + 'README.md', classDescription) if (os.path.exists(packagePath + 'build.yml')): os.remove(packagePath + 'build.yml') t = time.time() quilt.generate(packagePath) quilt.build(quiltUser + '/' + classDescription, packagePath + 'build.yml') pkgNode = quilt.load(quiltUser + '/' + classDescription) pkgNode._meta['trainable'] = classID in oi.classes_trainable().values pkgNode._meta['labelName'] = classDescription numImages = GetNumImages(folds, allImageIDs) pkgNode._meta['image_count'] = numImages GenerateImageMetadata(folds, allImageIDs, pkgNode, annList, logPath, imagePrefix) print('######## Image Metadata Generated#########') quilt.build(quiltUser + '/' + classDescription, pkgNode) print('######## New Package Generated#########') buildPkgTime = time.time() - t