Exemplo n.º 1
0
    def test_explicit_sweeps(self):
        n = 8
        chi = 16
        ham = MPO_ham_mbl(n, dh=4, seed=42)
        p0 = MPS_rand_state(n, 2).expand_bond_dimension(chi)

        b0 = p0.H
        p0.align_(ham, b0)
        en0 = (p0 & ham & b0) ^ ...
        dmrgx = DMRGX(ham, p0, chi)
        dmrgx.sweep_right()
        en1 = dmrgx.sweep_left(canonize=False)
        assert en0 != en1

        dmrgx.sweep_right(canonize=False)
        en = dmrgx.sweep_right(canonize=True)

        # check normalized
        assert_allclose(dmrgx._k.H @ dmrgx._k, 1.0)

        k = dmrgx._k.to_dense()
        h = ham.to_dense()
        el, ev = eigh(h)

        # check variance very low
        assert np.abs((k.H @ h @ h @ k) - (k.H @ h @ k)**2) < 1e-12

        # check exactly one eigenvalue matched well
        assert np.sum(np.abs(el - en) < 1e-12) == 1

        # check exactly one eigenvector is matched with high fidelity
        ovlps = (ev.H @ k).A**2
        big_ovlps = ovlps[ovlps > 1e-12]
        assert_allclose(big_ovlps, [1])

        # check fully
        assert is_eigenvector(k, h, tol=1e-10)
Exemplo n.º 2
0
 def test_sites_mpo_mps_product(self, cyclic):
     k = MPS_rand_state(13, 7, cyclic=cyclic)
     X = MPO_rand_herm(3, 5, sites=[3, 6, 7], nsites=13, cyclic=cyclic)
     b = k.H
     k.align_(X, b)
     assert (k & X & b) ^ ...