Exemplo n.º 1
0
def decode_predictions(preds, classes, top):
    if not classes:
        print("Warning! you didn't pass your own set of classes for the model therefore imagenet classes are used")
        return decode_imagenet_predictions(preds, top)

    if len(preds.shape) != 2 or preds.shape[1] != len(classes):
        raise ValueError('you need to provide same number of classes as model prediction output ' + \
                         'model returns %s predictions, while there are %s classes' % (
                             preds.shape[1], len(classes)))
    results = []
    for pred in preds:
        top_indices = pred.argsort()[-top:][::-1]
        result = [("", classes[i], pred[i]) for i in top_indices]
        results.append(result)
    return results
Exemplo n.º 2
0
def decode_predictions(preds, classes, top):
    if not classes:
        print("Warning! you didn't pass your own set of classes for the model therefore imagenet classes are used")
        return decode_imagenet_predictions(preds, top)

    if len(preds.shape) != 2 or preds.shape[1] != len(classes):
        raise ValueError('you need to provide same number of classes as model prediction output ' + \
                         'model returns %s predictions, while there are %s classes' % (
                             preds.shape[1], len(classes)))
    results = []
    for pred in preds:
        top_indices = pred.argsort()[-top:][::-1]
        result = [("", classes[i], pred[i]) for i in top_indices]
        results.append(result)
    return results